Skip to main content

Python Parallel Processing and Threading Comparison

If you want to maximize your CPU bound #python processing tasks you can think the following way.


Given that your Python process is CPU-bound and you have almost unlimited CPU capacity, using `concurrent.futures.ProcessPoolExecutor` is likely to provide better performance than `concurrent.futures.ThreadPoolExecutor`. Here's why:


1. Parallelism: `ProcessPoolExecutor` utilizes separate processes, each running in its own Python interpreter, which allows them to run truly concurrently across multiple CPU cores. On the other hand, `ThreadPoolExecutor` uses #threads, which are subject to the Global Interpreter Lock (GIL) in Python, limiting true parallelism when it comes to CPU-bound tasks.


2. GIL Limitation: The GIL restricts the execution of Python bytecode to a single thread at a time, even in multi-threaded applications. While threads can be useful for I/O-bound tasks or tasks that release the GIL, they are less effective for CPU-bound tasks because they cannot run simultaneously due to the GIL.


3. Isolation: Processes have their own memory space, providing better isolation compared to threads. This can be beneficial for tasks that involve shared state or resources, as processes don't share memory by default and thus avoid many concurrency issues.


4. CPU Utilization: Since processes run independently and can utilize multiple CPU cores without contention, `ProcessPoolExecutor` can fully utilize the available CPU capacity, leading to better performance for CPU-bound tasks.


Therefore, if you want to maximize the performance of your CPU-bound Python process with unlimited CPU capacity, using `concurrent.futures.ProcessPoolExecutor` is generally the preferred choice. It allows for true #parallelism across multiple CPU cores and avoids the limitations imposed by the GIL.

Comments

Popular posts from this blog

Financial Engineering

Financial Engineering: Key Concepts Financial engineering is a multidisciplinary field that combines financial theory, mathematics, and computer science to design and develop innovative financial products and solutions. Here's an in-depth look at the key concepts you mentioned: 1. Statistical Analysis Statistical analysis is a crucial component of financial engineering. It involves using statistical techniques to analyze and interpret financial data, such as: Hypothesis testing : to validate assumptions about financial data Regression analysis : to model relationships between variables Time series analysis : to forecast future values based on historical data Probability distributions : to model and analyze risk Statistical analysis helps financial engineers to identify trends, patterns, and correlations in financial data, which informs decision-making and risk management. 2. Machine Learning Machine learning is a subset of artificial intelligence that involves training algorithms t...

Wholesale Customer Solution with Magento Commerce

The client want to have a shop where regular customers to be able to see products with their retail price, while Wholesale partners to see the prices with ? discount. The extra condition: retail and wholesale prices hasn’t mathematical dependency. So, a product could be $100 for retail and $50 for whole sale and another one could be $60 retail and $50 wholesale. And of course retail users should not be able to see wholesale prices at all. Basically, I will explain what I did step-by-step, but in order to understand what I mean, you should be familiar with the basics of Magento. 1. Creating two magento websites, stores and views (Magento meaning of website of course) It’s done from from System->Manage Stores. The result is: Website | Store | View ———————————————— Retail->Retail->Default Wholesale->Wholesale->Default Both sites using the same category/product tree 2. Setting the price scope in System->Configuration->Catalog->Catalog->Price set drop-down to...

How to Prepare for AI Driven Career

  Introduction We are all living in our "ChatGPT moment" now. It happened when I asked ChatGPT to plan a 10-day holiday in rural India. Within seconds, I had a detailed list of activities and places to explore. The speed and usefulness of the response left me stunned, and I realized instantly that life would never be the same again. ChatGPT felt like a bombshell—years of hype about Artificial Intelligence had finally materialized into something tangible and accessible. Suddenly, AI wasn’t just theoretical; it was writing limericks, crafting decent marketing content, and even generating code. The world is still adjusting to this rapid shift. We’re in the middle of a technological revolution—one so fast and transformative that it’s hard to fully comprehend. This revolution brings both exciting opportunities and inevitable challenges. On the one hand, AI is enabling remarkable breakthroughs. It can detect anomalies in MRI scans that even seasoned doctors might miss. It can trans...