Showing posts with label aws. Show all posts
Showing posts with label aws. Show all posts

Saturday

AWS AI ML and GenAI Tools and Resources

 AWS offers a comprehensive suite of AI, ML, and generative AI tools and resources. Here’s an overview:


AI Tools and Services

1. Amazon Rekognition: For image and video analysis, including facial recognition and object detection.

2. Amazon Polly: Converts text into lifelike speech.

3. Amazon Transcribe: Automatically converts speech to text.

4. Amazon Lex: Builds conversational interfaces for applications.

5. Amazon Translate: Provides neural machine translation for translating text between languages.


Machine Learning Tools and Services

1. Amazon SageMaker: A fully managed service to build, train, and deploy machine learning models at scale.

2. AWS Deep Learning AMIs: Preconfigured environments for deep learning applications.

3. AWS Deep Learning Containers: Optimized container images for deep learning.

4. Amazon Forecast: Uses machine learning to deliver highly accurate forecasts.

5. Amazon Comprehend: Natural language processing (NLP) service to extract insights from text.


Generative AI Tools and Resources

1. Amazon Bedrock: A fully managed service to build and scale applications with large language models (LLMs) and foundation models (FMs).

2. Amazon Q: A generative AI-powered assistant tailored for business needs.

3. AWS App Studio: The fastest way to build enterprise-grade applications.

4. AWS DeepComposer: A service for creating music with deep learning.

5. AWS DeepRacer: A service for building and testing autonomous vehicles using reinforcement learning.


These tools and services can help you build, train, and deploy AI and ML models, as well as create generative AI applications. 

Connecting AWS AI/ML resources to Azure for a generative AI application involves several steps. Here’s a step-by-step guide:


Step 1: Set Up AWS Resources

1. Create an AWS Account: If you don't have one, sign up for an AWS account.

2. Set Up Amazon SageMaker: Use SageMaker to build, train, and deploy your machine learning models.

3. Use Amazon Bedrock: For generative AI, leverage Amazon Bedrock to access pre-trained models and build your application.


Step 2: Transfer Data to AWS

1. Data Migration: Use AWS Data Exchange or AWS Glue to migrate your on-premises data to AWS.

2. Store Data in S3: Store your unstructured data in Amazon S3 for easy access and scalability.


Step 3: Develop and Train Models

1. Model Development: Use Amazon SageMaker to develop and train your machine learning models on the data stored in S3.

2. Model Training: Train your models using SageMaker’s built-in algorithms or custom algorithms.


Step 4: Deploy Models

1. Deploy Models: Deploy your trained models using Amazon SageMaker endpoints for real-time predictions.

2. Set Up API Gateway: Use AWS API Gateway to create RESTful APIs for your models, making them accessible over the internet.


Step 5: Connect AWS to Azure

1. Set Up Azure Machine Learning Workspace: Create an Azure Machine Learning workspace to manage your ML resources.

2. Use Azure OpenAI Service: Integrate with Azure OpenAI Service for generative AI capabilities.

3. Data Transfer: Transfer data from AWS S3 to Azure Blob Storage using Azure Data Factory or other data transfer tools.


Step 6: Build a Generative AI Application

1. Integrate AWS and Azure: Use APIs to connect your AWS models with Azure services.

2. Develop Application: Build your generative AI application using Azure AI tools and integrate it with your AWS models.

3. Deploy Application: Deploy your application on Azure, ensuring it can access both AWS and Azure resources seamlessly.


Step 7: Monitor and Manage

1. Monitoring: Use Azure Monitor and AWS CloudWatch to monitor the performance and health of your application.

2. Management: Manage your resources and deployments using Azure and AWS management tools.


By following these steps, you can effectively connect AWS AI/ML resources with Azure for your generative AI application. 



Convert Docker Compose to Kubernetes Orchestration

If you already have a Docker Compose based application. And you may want to orchestrate the containers with Kubernetes. If you are new to Kubernetes then you can search various articles in this blog or Kubernetes website.

Here's a step-by-step plan to migrate your Docker Compose application to Kubernetes:


Step 1: Create Kubernetes Configuration Files

Create a directory for your Kubernetes configuration files (e.g., k8s-config).

Create separate YAML files for each service (e.g., api.yaml, pgsql.yaml, mongodb.yaml, rabbitmq.yaml).

Define Kubernetes resources (Deployments, Services, Persistent Volumes) for each service.


Step 2: Define Kubernetes Resources

Deployment YAML Example (api.yaml)

YAML

apiVersion: apps/v1

kind: Deployment

metadata:

  name: api-deployment

spec:

  replicas: 1

  selector:

    matchLabels:

      app: api

  template:

    metadata:

      labels:

        app: api

    spec:

      containers:

      - name: api

        image: <your-docker-image-name>

        ports:

        - containerPort: 8000

Service YAML Example (api.yaml)

YAML

apiVersion: v1

kind: Service

metadata:

  name: api-service

spec:

  selector:

    app: api

  ports:

  - name: http

    port: 8000

    targetPort: 8000

  type: ClusterIP

Repeat this process for other services (pgsql, mongodb, rabbitmq).


Step 3: Configure Persistent Storage

Create Persistent Volume Claims (PVCs) for databases.

Define StorageClass for dynamic provisioning.

Persistent Volume Claim YAML Example (pgsql-pvc.yaml)

YAML

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: pgsql-pvc

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 5Gi

StorageClass YAML Example (storage-class.yaml)

YAML

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: local-storage

provisioner: kubernetes.io/no-provisioner

volumeBindingMode: WaitForFirstConsumer


Step 4: Deploy to Kubernetes

Create namespace: kubectl create namespace <namespace-name>

Apply configuration files: kubectl apply -f <config-file>.yaml

Verify deployments: kubectl get deployments -n <namespace-name>

Verify pods: kubectl get pods -n <namespace-name>

Verify services: kubectl get svc -n <namespace-name>

Step 5: Expose Services

Create Ingress resources for external access.

Configure Ingress Controller (e.g., NGINX).

Ingress YAML Example (ingress.yaml)

YAML

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: api-ingress

spec:

  rules:

  - host: <your-domain>

    http:

      paths:

      - path: /

        backend:

          serviceName: api-service

          servicePort: 8000


Step 6: Monitor and Maintain

Set up monitoring tools (e.g., Prometheus, Grafana).

Implement logging solutions (e.g., Fluentd, Elasticsearch).

Regularly update images and configurations.

Implementation Tools

kubectl: Kubernetes command-line tool.

kustomize: Configuration management tool.

Helm: Package manager for Kubernetes.

Additional Tips

Test locally with Minikube or Kind before deploying to production.

Use environment variables for configuration.

Implement rolling updates for zero-downtime deployments.

This migration plan provides a solid foundation. Adjust configurations according to your specific requirements.


Say I have a Docker Compose yaml file eg.

# version: '3.8'


services:

  pgsql:

    container_name: pgsql

    image: postgres:15-alpine

    volumes:

      - postgres-data-volume:/var/lib/postgresql/data/

      - ./app/init.sql:/docker-entrypoint-initdb.d/init.sql

    ports:

      - 5433:5432

    environment:

      - POSTGRES_USER=postgres

      - POSTGRES_PASSWORD=password123

      - POSTGRES_DB=lcnc_db_dev

    networks:

      - app-network

    healthcheck:

      test: ["CMD-SHELL", "pg_isready -U postgres"]

      interval: 5s

      retries: 5


  # adminer:

  #   image: adminer

  #   container_name: pgsql-adminer

  #   ports:

  #     - 8080:8080

  #   depends_on:

  #     - pgsql

  #   networks:

  #     - app-network


  app:

    build:

      context: ./app  # Change context to the app folder

      dockerfile: Dockerfile  # Dockerfile name remains the same

    container_name: app

    env_file:

      - ./.env.dev

    environment:

      - PYTHONPATH=/app

    volumes:

      - ./app:/app

      - ./app/generated_files:/app/generated_files  # Mount for generated backend files 

      - ./app/dart_files:/app/dart_files

    ports:

      - "8001:8001"

    depends_on:

      pgsql:

        condition: service_healthy

      redis:

        condition: service_healthy

    networks:

      - app-network

    deploy:

      resources:

        limits:

          cpus: '2.00'

          memory: 4G


  redis:

    image: redis:alpine

    container_name: redis

    ports:

      - "6379:6379"

    networks:

      - app-network

    healthcheck:

      test: ["CMD", "redis-cli", "ping"]

      interval: 5s

      timeout: 3s

      retries: 3

    deploy:

      resources:

        limits:

          cpus: '1.00'

          memory: 2G

    restart: always


  redis_insight:

    image: redis/redisinsight:latest

    container_name: redis_insight

    ports:

      - "5540:5540"

    networks:

      - app-network

    depends_on:

      redis:

        condition: service_healthy


  celery_worker:

    build:

      context: ./app

      dockerfile: Dockerfile.celery-worker

    container_name: celery_worker

    environment:

      - PYTHONPATH=/app

      - BROKER_URL=redis://redis:6379/0

      - RESULT_BACKEND=redis://redis:6379/0

      - PREFETCH_MULTIPLIER=1

      - MAX_MEMORY_PER_CHILD=512

    depends_on:

      - app

      - redis

      - pgsql

    volumes:

      - ./app:/app

      - ./app/generated_files:/app/generated_files

      - ./app/dart_files:/app/dart_files

    networks:

      - app-network

    restart: unless-stopped


volumes:

  postgres-data-volume:  # Named volume for PostgreSQL data


networks:

  app-network:

    driver: bridge


Here's the equivalent Kubernetes configuration for the provided Docker Compose file:

Step 1: Create Namespace

Bash
kubectl create namespace dev-namespace

Step 2: PostgreSQL Deployment and Service

YAML
# pgsql-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: pgsql-deployment
  namespace: dev-namespace
spec:
  replicas: 1
  selector:
    matchLabels:
      app: pgsql
  template:
    metadata:
      labels:
        app: pgsql
    spec:
      containers:
      - name: pgsql
        image: postgres:15-alpine
        ports:
        - containerPort: 5432
        volumeMounts:
        - name: postgres-data-volume
          mountPath: /var/lib/postgresql/data/
        - name: init-sql-volume
          mountPath: /docker-entrypoint-initdb.d/
        env:
        - name: POSTGRES_USER
          value: "postgres"
        - name: POSTGRES_PASSWORD
          value: "password123"
        - name: POSTGRES_DB
          value: "lcnc_db_dev"
      volumes:
      - name: postgres-data-volume
        persistentVolumeClaim:
          claimName: postgres-pvc
      - name: init-sql-volume
        configMap:
          name: init-sql-cm
  strategy:
    type: Recreate

# pgsql-service.yaml
apiVersion: v1
kind: Service
metadata:
  name: pgsql-service
  namespace: dev-namespace
spec:
  selector:
    app: pgsql
  ports:
  - name: pgsql
    port: 5432
    targetPort: 5432
  type: ClusterIP

# Create ConfigMap for init.sql
kubectl create configmap init-sql-cm --from-file=init.sql -n dev-namespace

# Create Persistent Volume Claim
# postgres-pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: postgres-pvc
  namespace: dev-namespace
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 5Gi

Step 3: Redis Deployment and Service

YAML
# redis-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: redis-deployment
  namespace: dev-namespace
spec:
  replicas: 1
  selector:
    matchLabels:
      app: redis
  template:
    metadata:
      labels:
        app: redis
    spec:
      containers:
      - name: redis
        image: redis:alpine
        ports:
        - containerPort: 6379
  strategy:
    type: Recreate

# redis-service.yaml
apiVersion: v1
kind: Service
metadata:
  name: redis-service
  namespace: dev-namespace
spec:
  selector:
    app: redis
  ports:
  - name: redis
    port: 6379
    targetPort: 6379
  type: ClusterIP

Step 4: App Deployment and Service

YAML
# app-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: app-deployment
  namespace: dev-namespace
spec:
  replicas: 1
  selector:
    matchLabels:
      app: app
  template:
    metadata:
      labels:
        app: app
    spec:
      containers:
      - name: app
        image: <your-docker-image-name>
        ports:
        - containerPort: 8001
        volumeMounts:
        - name: app-volume
          mountPath: /app
        - name: generated-files-volume
          mountPath: /app/generated_files
        - name: dart-files-volume
          mountPath: /app/dart_files
        env:
        - name: PYTHONPATH
          value: "/app"
  strategy:
    type: Recreate
  volumes:
  - name: app-volume
    persistentVolumeClaim:
      claimName: app-pvc
  - name: generated-files-volume
    emptyDir: {}
  - name: dart-files-volume
    emptyDir: {}

# app-service.yaml
apiVersion: v1
kind: Service
metadata:
  name: app-service
  namespace: dev-namespace
spec:
  selector:
    app: app
  ports:
  - name: app
    port: 8001
    targetPort: 8001
  type: ClusterIP

# Create Persistent Volume Claim
# app-pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: app-pvc
  namespace: dev-namespace
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 2Gi

Step 5: Celery Worker Deployment

YAML
# celery-worker-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: celery-worker-deployment
  namespace: dev-namespace
spec:
  replicas: 1
  selector:
    matchLabels:
      app: celery-worker
  template:
    metadata:
      labels:
        app: celery-worker
    spec:
      containers:
      - name: celery-worker
        image: <your-docker-image-name>
        volumeMounts:
        - name: app-volume
          mountPath: /app
        - name: generated-files-volume
          mountPath: /app/generated_files
        - name: dart-files-volume
          mountPath: /app/dart_files
        env:
        - name: PYTHONPATH
          value: "/app"
        - name: BROKER_URL
          value: "redis://redis-service:6379/0"
        - name: RESULT_BACKEND
          value: "redis://redis-service:6379/0"
  strategy:
    type: Recreate
  volumes:
  - name: app-volume
    persistentVolumeClaim:
      claimName: app-pvc
  - name: generated-files-volume
    emptyDir: {}
  - name: dart-files-volume
    emptyDir: {}

Step 6: Apply Kubernetes Configuration

Bash
kubectl apply -f pgsql-deployment.yaml
kubectl apply -f pgsql-service.yaml
kubectl apply -f redis-deployment.yaml
kubectl apply -f redis-service.yaml
kubectl apply -f app-deployment.yaml
kubectl apply -f app-service.yaml
kubectl apply -f celery-worker-deployment.yaml

Step 7: Verify Deployments

Bash
kubectl get deployments -n dev-namespace
kubectl get pods -n dev-namespace
kubectl get svc -n dev-namespace
This Kubernetes configuration mirrors the Docker Compose file. Adjust image names, resource requests and other parameters as necessary.

Additional Tips

Use Secret resources for sensitive data (e.g., passwords).
Implement Horizontal Pod Autoscaling (HPA) for dynamic scaling.
Monitor cluster performance with Prometheus and Grafana.

Here are examples of applying Kubernetes in Google Cloud and Azure:

Google Cloud (GKE)

Step 1: Create a GKE Cluster

Create a new project: gcloud projects create <project-name>
Enable Kubernetes Engine API: gcloud services enable container.googleapis.com
Create a cluster: gcloud container clusters create <cluster-name> --zone <zone> --num-nodes 3

Step 2: Deploy Application

Create Deployment YAML file (e.g., deployment.yaml)
Apply Deployment: kubectl apply -f deployment.yaml
Expose Service: kubectl expose deployment <deployment-name> --type LoadBalancer --port 80

Step 3: Verify Deployment

Get Cluster credentials: gcloud container clusters get-credentials <cluster-name> --zone <zone>
Verify pods: kubectl get pods
Verify services: kubectl get svc

GKE Example Commands
Bash
# Create project and enable API
gcloud projects create my-project
gcloud services enable container.googleapis.com

# Create GKE cluster
gcloud container clusters create my-cluster --zone us-central1-a --num-nodes 3

# Deploy application
kubectl apply -f deployment.yaml

# Expose service
kubectl expose deployment my-app --type LoadBalancer --port 80

# Verify deployment
gcloud container clusters get-credentials my-cluster --zone us-central1-a
kubectl get pods
kubectl get svc


Azure (AKS)

Step 1: Create AKS Cluster

Create resource group: az group create --name <resource-group> --location <location>
Create AKS cluster: az aks create --resource-group <resource-group> --name <cluster-name> --node-count 3

Step 2: Deploy Application

Create Deployment YAML file (e.g., deployment.yaml)
Apply Deployment: kubectl apply -f deployment.yaml
Expose Service: kubectl expose deployment <deployment-name> --type LoadBalancer --port 80

Step 3: Verify Deployment

Get Cluster credentials: az aks get-credentials --resource-group <resource-group> --name <cluster-name>
Verify pods: kubectl get pods
Verify services: kubectl get svc
AKS Example Commands
Bash
# Create resource group and AKS cluster
az group create --name my-resource-group --location eastus
az aks create --resource-group my-resource-group --name my-aks-cluster --node-count 3

# Deploy application
kubectl apply -f deployment.yaml

# Expose service
kubectl expose deployment my-app --type LoadBalancer --port 80

# Verify deployment
az aks get-credentials --resource-group my-resource-group --name my-aks-cluster
kubectl get pods
kubectl get svc

Additional Tips
Use managed identities for authentication.
Implement network policies for security.
Monitor cluster performance with Azure Monitor or Google Cloud Monitoring.

Kubernetes Deployment YAML Example
YAML
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-app
spec:
  replicas: 3
  selector:
    matchLabels:
      app: my-app
  template:
    metadata:
      labels:
        app: my-app
    spec:
      containers:
      - name: my-app
        image: <your-docker-image-name>
        ports:
        - containerPort: 80

Thursday

Databrickls Lakehouse & Well Architect Notion

Let's quickly learn about Databricks, Lakehouse architecture and their integration with cloud service providers:


What is Databricks?

Databricks is a cloud-based data engineering platform that provides a unified analytics platform for data engineering, data science and data analytics. It's built on top of Apache Spark and supports various data sources, processing engines and data science frameworks.


What is Lakehouse Architecture?

Lakehouse architecture is a modern data architecture that combines the benefits of data lakes and data warehouses. It provides a centralized repository for storing and managing data in its raw, unprocessed form, while also supporting ACID transactions, schema enforcement and data governance.


Key components of Lakehouse architecture:

Data Lake: Stores raw, unprocessed data.

Data Warehouse: Supports processed and curated data for analytics.

Metadata Management: Tracks data lineage, schema and permissions.

Data Governance: Ensures data quality, security and compliance.

Databricks and Lakehouse Architecture

Databricks implements Lakehouse architecture through its platform, providing:

Delta Lake: An open-source storage format that supports ACID transactions and data governance.

Databricks File System (DBFS): A scalable, secure storage solution.

Apache Spark: Enables data processing, analytics and machine learning.




Integration with Cloud Service Providers

Databricks supports integration with major cloud providers:


AWS




AWS Integration: Databricks is available on AWS Marketplace.

AWS S3: Seamlessly integrates with S3 for data storage.

AWS IAM: Supports IAM roles for secure authentication.


Azure




Azure Databricks: A first-party service within Azure.

Azure Blob Storage: Integrates with Blob Storage for data storage.

Azure Active Directory: Supports Azure AD for authentication.


GCP




GCP Marketplace: Databricks is available on GCP Marketplace.

Google Cloud Storage: Integrates with Cloud Storage for data storage.

Google Cloud IAM: Supports Cloud IAM for secure authentication.


Benefits


Unified analytics platform

Scalable and secure data storage

Simplified data governance and compliance

Integration with popular cloud providers

Support for various data science frameworks


Use Cases


Data warehousing and business intelligence

Data science and machine learning

Real-time analytics and streaming data

Cloud data migration and integration

Data governance and compliance





All images used are credited to Databricks.

Wednesday

Learning Apache Parquet

Apache Parquet is a columnar storage format commonly used in cloud-based data processing and analytics. It allows for efficient data compression and encoding, making it suitable for big data applications. Here's an overview of Parquet and its benefits, along with an example of its usage in a cloud environment:

What is Parquet?

Parquet is an open-source, columnar storage format developed by Twitter and Cloudera. It's designed for efficient data storage and retrieval in big data analytics.

Benefits

Columnar Storage: Stores data in columns instead of rows, reducing I/O and improving query performance.

Compression: Supports various compression algorithms, minimizing storage space.

Encoding: Uses efficient encoding schemes, further reducing storage needs.

Query Efficiency: Optimized for fast query execution.

Cloud Example: Using Parquet in AWS


Here's a simplified example using AWS Glue, S3 and Athena:

Step 1: Data Preparation

Create an AWS Glue crawler to identify your data schema.

Use AWS Glue ETL (Extract, Transform, Load) jobs to convert your data into Parquet format.

Store the Parquet files in Amazon S3.

Step 2: Querying with Amazon Athena

Create an Amazon Athena table pointing to your Parquet data in S3.

Execute SQL queries on the Parquet data using Athena.


Sample AWS Glue ETL Script in Python

Python


import sys

from awsglue.transforms import *

from awsglue.utils import getResolvedOptions

from pyspark.context import SparkContext

from awsglue.context import GlueContext

from awsglue.job import Job


# Initialize context and Spark session

glue_context = GlueContext(SparkContext())

spark = glue_context.spark_session


# Load data from source (e.g., JSON)

datasource0 = glue_context.create_dynamic_frame.from_catalog(

    database="your_database",

    table_name="your_table")


# Convert to Parquet and write to S3

glue_context.write_dynamic_frame.from_catalog(

    frame=datasource0,

    database="your_database",

    table_name="your_parquet_table",

    format="parquet",

    storage_location="s3://your-bucket/parquet-data/")


Sample Athena Query

SQL

SELECT *

FROM your_parquet_table

WHERE column_name = 'specific_value';

This example illustrates how Parquet enhances data efficiency and query performance in cloud analytics. 


Here's an example illustrating the benefits of converting CSV data in S3 to Parquet format.


Initial Setup: CSV Data in S3

Assume you have a CSV file (data.csv) stored in an S3 bucket (s3://my-bucket/data/).


CSV File Structure


|  Column A  |  Column B  |  Column C  |

|------------|------------|------------|

|  Value 1   |  Value 2   |  Value 3   |

|  ...      |  ...      |  ...      |


Challenges with CSV

Slow Query Performance: Scanning entire rows for column-specific data.

High Storage Costs: Uncompressed data occupies more storage space.

Inefficient Data Retrieval: Reading unnecessary columns slows queries.


Converting CSV to Parquet

Use AWS Glue to convert the CSV data to Parquet.


AWS Glue ETL Script (Python)

Python


import sys

from awsglue.transforms import *

from awsglue.utils import getResolvedOptions

from pyspark.context import SparkContext

from awsglue.context import GlueContext

from awsglue.job import Job


# Initialize context and Spark session

glue_context = GlueContext(SparkContext())

spark = glue_context.spark_session


# Load CSV data from S3

datasource0 = glue_context.create_dynamic_frame.from_catalog(

    database="your_database",

    table_name="your_csv_table")


# Convert to Parquet and write to S3

glue_context.write_dynamic_frame.from_catalog(

    frame=datasource0,

    database="your_database",

    table_name="your_parquet_table",

    format="parquet",

    storage_location="s3://my-bucket/parquet-data/",

    partitionBy=["Column A"])  # Partition by Column A for efficient queries


Parquet Benefits

Faster Query Performance: Columnar storage enables efficient column-specific queries.

Reduced Storage Costs: Compressed Parquet data occupies less storage space.

Efficient Data Retrieval: Only relevant columns are read.


Querying Parquet Data with Amazon Athena

SQL


SELECT "Column A", "Column C"

FROM your_parquet_table

WHERE "Column A" = 'specific_value';


Perspectives Where Parquet Excels

Data Analytics: Faster queries enable real-time insights.

Data Science: Efficient data retrieval accelerates machine learning workflows.

Data Engineering: Reduced storage costs and optimized data processing.

Business Intelligence: Quick data exploration and visualization.


Comparison: CSV vs. Parquet

Metric CSV Parquet

Storage Size 100 MB 20 MB

Query Time 10 seconds 2 seconds

Data Retrieval Entire row Column-specific


Here are some reference links to learn and practice Parquet, AWS Glue, Amazon Athena and related technologies:

Official Documentation

Apache Parquet: https://parquet.apache.org/

AWS Glue: https://aws.amazon.com/glue/

Amazon Athena: https://aws.amazon.com/athena/

AWS Lake Formation: https://aws.amazon.com/lake-formation/


Tutorials and Guides

AWS Glue Tutorial: https://docs.aws.amazon.com/glue/latest/dg/setting-up.html

Amazon Athena Tutorial: https://docs.aws.amazon.com/athena/latest/ug/getting-started.html

Parquet File Format Tutorial (DataCamp): https://campus.datacamp.com/courses/cleaning-data-with-pyspark/dataframe-details?ex=7#:~:text=Parquet%20is%20a%20compressed%20columnar,without%20processing%20the%20entire%20file.

Big Data Analytics with AWS Glue and Athena (edX): https://www.edx.org/learn/data-analysis/amazon-web-services-getting-started-with-data-analytics-on-aws


Practice Platforms

AWS Free Tier: Explore AWS services, including Glue and Athena.

AWS Sandbox: Request temporary access for hands-on practice.

DataCamp: Interactive courses and tutorials.

Kaggle: Practice data science and analytics with public datasets.

Communities and Forums

AWS Community Forum: Discuss Glue, Athena and Lake Formation.

Apache Parquet Mailing List: Engage with Parquet developers.

Reddit (r/AWS, r/BigData): Join conversations on AWS, big data and analytics.

Stack Overflow: Ask and answer Parquet, Glue and Athena questions.

Books

"Big Data Analytics with AWS Glue and Athena" by Packt Publishing

"Learning Apache Parquet" by Packt Publishing

"AWS Lake Formation: Data Warehousing and Analytics" by Apress

Courses

AWS Certified Data Analytics - Specialty: Validate skills.

Data Engineering on AWS: Learn data engineering best practices.

Big Data on AWS: Explore big data architectures.

Parquet and Columnar Storage (Coursera): Dive into Parquet fundamentals.

Blogs

AWS Big Data Blog: Stay updated on AWS analytics.

Apache Parquet Blog: Follow Parquet development.

Data Engineering Blog (Medium): Explore data engineering insights.

Enhance your skills through hands-on practice, tutorials and real-world projects.


To fully leverage Parquet, AWS Glue and Amazon Athena, a cloud account is beneficial but not strictly necessary for initial learning.

Cloud Account Benefits

Hands-on experience: Explore AWS services and Parquet in a real cloud environment.
Scalability: Test large-scale data processing and analytics.
Integration: Experiment with AWS services integration (e.g., S3, Lambda).
Cost-effective: Utilize free tiers and temporary promotions.

Cloud Account Options
AWS Free Tier: 12-month free access to AWS services, including Glue and Athena.
AWS Educate: Free access for students and educators.
Google Cloud Free Tier: Explore Google Cloud's free offerings.
Azure Free Account: Utilize Microsoft Azure's free services.

Learning Without a Cloud Account

Local simulations: Use Localstack, MinIO and Docker for mock AWS environments.
Tutorials and documentation: Study AWS and Parquet documentation.
Online courses: Engage with video courses, blogs and forums.
Parquet libraries: Experiment with Parquet libraries in your preferred programming language.

Initial Learning Steps (No Cloud Account)

Install Parquet libraries (e.g., Python's parquet package).
Explore Parquet file creation, compression and encoding.
Study AWS Glue and Athena documentation.
Engage with online communities (e.g., Reddit, Stack Overflow).

Transitioning to Cloud

Create a cloud account (e.g., AWS Free Tier).
Deploy Parquet applications to AWS.
Integrate with AWS services (e.g., S3, Lambda).
Scale and optimize applications.

Recommended Learning Path

Theoretical foundation: Understand Parquet, Glue and Athena concepts.
Local practice: Experiment with Parquet libraries and simulations.
Cloud deployment: Transition to cloud environments.
Real-world projects: Apply skills to practical projects.

Resources

AWS Documentation: Comprehensive guides and tutorials.
Parquet GitHub: Explore Parquet code and issues.
Localstack Documentation: Configure local AWS simulations.
Online Courses: Platforms like DataCamp, Coursera and edX.

By following this structured approach, you'll gain expertise in Parquet, AWS Glue and Amazon Athena, both theoretically and practically.

Thursday

Masking Data Before Ingest

Masking data before ingesting it into Azure Data Lake Storage (ADLS) Gen2 or any cloud-based data lake involves transforming sensitive data elements into a protected format to prevent unauthorized access. Here's a high-level approach to achieving this:

1. Identify Sensitive Data:

   - Determine which fields or data elements need to be masked, such as personally identifiable information (PII), financial data, or health records.


2. Choose a Masking Strategy:

   - Static Data Masking (SDM): Mask data at rest before ingestion.

   - Dynamic Data Masking (DDM): Mask data in real-time as it is being accessed.


3. Implement Masking Techniques:

   - Substitution: Replace sensitive data with fictitious but realistic data.

   - Shuffling: Randomly reorder data within a column.

   - Encryption: Encrypt sensitive data and decrypt it when needed.

   - Nulling Out: Replace sensitive data with null values.

   - Tokenization: Replace sensitive data with tokens that can be mapped back to the original data.


4. Use ETL Tools:

   - Utilize ETL (Extract, Transform, Load) tools that support data masking. Examples include Azure Data Factory, Informatica, Talend, or Apache Nifi.


5. Custom Scripts or Functions:

   - Write custom scripts in Python, Java, or other programming languages to mask data before loading it into the data lake.


Example Using Azure Data Factory:


1. Create Data Factory Pipeline:

   - Set up a pipeline in Azure Data Factory to read data from the source.


2. Use Data Flow:

   - Add a Data Flow activity to your pipeline.

   - In the Data Flow, add a transformation step to mask sensitive data.


3. Apply Masking Logic:

   - Use built-in functions or custom expressions to mask data. For example, use the `replace()` function to substitute characters in a string.


```json


{


  "name": "MaskSensitiveData",


  "activities": [


    {


      "name": "DataFlow1",


      "type": "DataFlow",


      "dependsOn": [],


      "policy": {


        "timeout": "7.00:00:00",


        "retry": 0,


        "retryIntervalInSeconds": 30,


        "secureOutput": false,


        "secureInput": false


      },


      "userProperties": [],


      "typeProperties": {


        "dataFlow": {


          "referenceName": "DataFlow1",


          "type": "DataFlowReference"


        },


        "integrationRuntime": {


          "referenceName": "AutoResolveIntegrationRuntime",


          "type": "IntegrationRuntimeReference"


        }


      }


    }


  ],


  "annotations": []


}


```


4. Load to ADLS Gen2:

   - After masking, load the transformed data into ADLS Gen2 using the Sink transformation.


By following these steps, you can ensure that sensitive data is masked before it is ingested into ADLS Gen2 or any other cloud-based data lake.

Wednesday

Automating ML Model Retraining

 

wikipedia


Automating model retraining in a production environment is a crucial aspect of Machine Learning Operations (MLOps). Here's a breakdown of how to achieve this:

Triggering Retraining:

There are two main approaches to trigger retraining:

  1. Schedule-based: Retraining happens at predefined intervals, like weekly or monthly. This is suitable for models where data patterns change slowly and predictability is important.

  2. Performance-based: A monitoring system tracks the model's performance metrics (accuracy, precision, etc.) in production. If these metrics fall below a predefined threshold, retraining is triggered. This is ideal for models where data can change rapidly.

Building the Retraining Pipeline:

  1. Version Control: Use a version control system (like Git) to manage your training code and model artifacts. This ensures reproducibility and allows easy rollbacks if needed.

  2. Containerization: Package your training code and dependencies in a container (like Docker). This creates a consistent environment for training across different machines.

  3. Data Pipeline: Establish a process to access and prepare fresh data for retraining. This could involve automating data cleaning, feature engineering, and splitting data into training and validation sets.

  4. Training Job Orchestration: Use an orchestration tool (like Airflow, Kubeflow) to automate the execution of the training script and data pipeline. This allows for scheduling and managing dependencies between steps.

  5. Model Evaluation & Selection: After training, evaluate the new model's performance on a validation set. If it meets your criteria, it can be promoted to production. Consider versioning models to track changes and revert if necessary.

Deployment & Rollback:

  1. Model Serving: Choose a model serving framework (TensorFlow Serving, KServe) to deploy the new model for production use.

  2. Blue-Green Deployment: Implement a blue-green deployment strategy to minimize downtime during model updates. In this approach, traffic is gradually shifted from the old model to the new one, allowing for rollback if needed.

Tools and Frameworks:

Several tools and frameworks can help automate model retraining:

  • MLflow: Open-source platform for managing the ML lifecycle, including model tracking, deployment, and retraining.
  • AWS SageMaker Pipelines: Service for building, training, and deploying models on AWS, with features for automated retraining based on drift detection.
  • Kubeflow: Open-source platform for deploying and managing ML workflows on Kubernetes.


Automating model retraining in a production environment typically involves the following steps:
1. Data Pipeline Automation:
   - Automate data collection, cleaning, and preprocessing.
   - Use tools like Apache Airflow, Luigi, or cloud-native services (e.g., AWS Glue, Google Cloud Dataflow).
2. Model Training Pipeline:
   - Schedule regular retraining jobs using cron jobs, Airflow, or cloud-native orchestration tools.
   - Store training scripts in a version-controlled repository (e.g., Git).
3. Model Versioning:
   - Use model versioning tools like MLflow, DVC, or cloud-native model registries (e.g., AWS SageMaker Model Registry).
   - Keep track of model metadata, parameters, and performance metrics.
4. Automated Evaluation:
   - Evaluate the model on a holdout validation set or cross-validation.
   - Use predefined metrics to determine if the new model outperforms the current one.
5. Model Deployment:
   - If the new model performs better, automatically deploy it to production.
   - Use CI/CD pipelines (e.g., Jenkins, GitHub Actions) to automate deployment.
   - Ensure rollback mechanisms are in place in case of issues.
6. Monitoring and Logging:
   - Monitor model performance in production using monitoring tools (e.g., Prometheus, Grafana).
   - Set up alerts for performance degradation or anomalies.
   - Log predictions and model performance metrics.
7. Feedback Loop:
   - Incorporate user feedback and real-world performance data to continuously improve the model.
   - Use A/B testing to compare new models against the current production model.
Here’s a high-level overview in code-like pseudocode:
```python
# Define a workflow using a tool like Apache Airflow
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
def extract_data():
    # Code to extract and preprocess data
    pass
def train_model():
    # Code to train the model
    pass
def evaluate_model():
    # Code to evaluate the model
    pass
def deploy_model():
    # Code to deploy the model if it passes evaluation
    pass
def monitor_model():
    # Code to monitor the deployed model
    pass
default_args = {
    'owner': 'user',
    'depends_on_past': False,
    'start_date': datetime(2023, 1, 1),
    'email_on_failure': False,
    'email_on_retry': False,
    'retries': 1,
}
dag = DAG(
    'model_retraining_pipeline',
    default_args=default_args,
    schedule_interval='@weekly',  # or any other schedule
)
t1 = PythonOperator(
    task_id='extract_data',
    python_callable=extract_data,
    dag=dag,
)
t2 = PythonOperator(
    task_id='train_model',
    python_callable=train_model,
    dag=dag,
)
t3 = PythonOperator(
    task_id='evaluate_model',
    python_callable=evaluate_model,
    dag=dag,
)
t4 = PythonOperator(
    task_id='deploy_model',
    python_callable=deploy_model,
    dag=dag,
)
t5 = PythonOperator(
    task_id='monitor_model',
    python_callable=monitor_model,
    dag=dag,
)
t1 >> t2 >> t3 >> t4 >> t5
```
If your cloud provide is Azure then you can find more details here
Or Google Cloud then here
or AWS then here
Hope this will help you with automated the Machine Learning training and environments. Thank you.