In #azuredatafactory at #transform and #enrich part can be done automatically or manually written by #pyspark two examples below one data source #csv another is #sqlserver with #incrementalloading Below is a simple end-to-end PySpark code example for a transform and enrich process in Azure Databricks. This example assumes you have a dataset stored in Azure Blob Storage, and you're using Azure Databricks for processing. ```python # Import necessary libraries from pyspark.sql import SparkSession from pyspark.sql.functions import col, lit, concat # Initialize SparkSession spark = SparkSession.builder \ .appName("Transform and Enrich Process") \ .getOrCreate() # Read data from Azure Blob Storage df = spark.read.csv("wasbs://<container_name>@<storage_account>.blob.core.windows.net/<file_path>", header=True) # Perform transformations transformed_df = df.withColumn("new_column", col("old_column") * 2) # Enrich data enriched...
As a seasoned expert in AI, Machine Learning, Generative AI, IoT and Robotics, I empower innovators and businesses to harness the potential of emerging technologies. With a passion for sharing knowledge, I curate insightful articles, tutorials and news on the latest advancements in AI, Robotics, Data Science, Cloud Computing and Open Source technologies. Hire Me Unlock cutting-edge solutions for your business. With expertise spanning AI, GenAI, IoT and Robotics, I deliver tailor services.