Skip to main content

Posts

Showing posts with the label data

Masking Data Before Ingest

Masking data before ingesting it into Azure Data Lake Storage (ADLS) Gen2 or any cloud-based data lake involves transforming sensitive data elements into a protected format to prevent unauthorized access. Here's a high-level approach to achieving this: 1. Identify Sensitive Data:    - Determine which fields or data elements need to be masked, such as personally identifiable information (PII), financial data, or health records. 2. Choose a Masking Strategy:    - Static Data Masking (SDM): Mask data at rest before ingestion.    - Dynamic Data Masking (DDM): Mask data in real-time as it is being accessed. 3. Implement Masking Techniques:    - Substitution: Replace sensitive data with fictitious but realistic data.    - Shuffling: Randomly reorder data within a column.    - Encryption: Encrypt sensitive data and decrypt it when needed.    - Nulling Out: Replace sensitive data with null values.    - Tokenization:...

Preparing a Dataset for Fine-Tuning Foundation Model

  I am trying to preparing a Dataset for Fine-Tuning on Pathology Lab Data. 1. Dataset Collection    - Sources:  Gather data from pathology lab reports, medical journals, and any other relevant medical documents.    - Format:  Ensure that the data is in a readable format like CSV, JSON, or text files. 2. Data Preprocessing    - Cleaning:  Remove any irrelevant data, correct typos, and handle missing values.    - Formatting:  Convert the data into a format suitable for fine-tuning, usually pairs of input and output texts.    - Example Format:      - Input:  "Patient exhibits symptoms of hyperglycemia."      - Output:  "Hyperglycemia" 3. Tokenization    - Tokenize the text using the tokenizer that corresponds to the model you intend to fine-tune. Example Code for Dataset Preparation Using Pandas and Transformers for Preprocessing 1. Install Required Libraries: ...

Retail Analytics

Photo by Lukas at pexel   To develop a pharmaceutical sales analytics system with geographical division and different categories of medicines, follow these steps: 1. Data Collection :    - Collect sales data from different regions.    - Gather data on different categories of medicines (e.g., prescription drugs, over-the-counter medicines, generic drugs).    - Include additional data sources like demographic data, economic indicators, and healthcare facility distribution. 2. Data Storage :    - Use a database (e.g., SQL, NoSQL) to store the data.    - Organize tables to handle regions, medicine categories, sales transactions, and any additional demographic or economic data. 3. Data Preprocessing :    - Clean the data to handle missing values and remove duplicates.    - Normalize data to ensure consistency across different data sources.    - Aggregate data to the required granularity (e.g., daily, weekly,...

Some Questions and Topics for Data Engineers and Data Architects

  How to do an incremental load in ADF? Incremental loading in Azure Data Factory (ADF) involves loading only the data that has changed since the last load. This can be achieved by using a combination of source system change tracking mechanisms (like timestamps or change data capture) and lookup activities in ADF pipelines to identify new or updated data. What is data profiling? Data profiling is the process of analyzing and understanding the structure, content, quality, and relationships within a dataset. It involves examining statistics, patterns, and anomalies to gain insights into the data and ensure its suitability for specific use cases like reporting, analytics, or machine learning. Difference between ETL and ELT? ETL (Extract, Transform, Load) involves extracting data from source systems, transforming it into a suitable format, and then loading it into a target system. ELT (Extract, Load, Transform) involves loading raw data into a target system first, then transforming it ...

Stream Processing Window Functions

  Photo by João Jesus: pexel A common goal of stream processing is to aggregate events into temporal intervals, or windows. For example, to count the number of social media posts per minute or to calculate the average rainfall per hour. Azure Stream Analytics includes native support for five kinds of temporal windowing functions. These functions enable you to define temporal intervals into which data is aggregated in a query. The supported windowing functions are Tumbling, Hopping, Sliding, Session, and Snapshot. No, these windowing functions are not exclusive to Azure Stream Analytics. They are commonly used concepts in stream processing and are available in various stream processing frameworks and platforms beyond Azure, such as Apache Flink, Apache Kafka Streams, and Apache Spark Streaming. The syntax and implementation might vary slightly between different platforms, but the underlying concepts remain the same. Five different types of Window functions Tumbling Window (Azure St...

Data Lake Comparison

AWS S3 (Simple Storage Service): Amazon Simple Storage Service (Amazon S3) is a scalable object storage service offered by Amazon Web Services (AWS). It provides developers and IT teams with secure, durable, and highly available storage infrastructure for a wide range of use cases, including data backup and recovery, data archiving, web and mobile applications, big data analytics, and content distribution. Key Features: 1. Scalability: Amazon S3 is designed to scale seamlessly from a few gigabytes to petabytes or more of data without any upfront provisioning. It can handle virtually unlimited amounts of data and requests. 2. Durability and Availability: S3 stores data redundantly across multiple devices and facilities within a region to ensure high durability and availability. It offers 99.999999999% (11 nines) durability and 99.99% availability SLA. 3. Security: S3 provides several security features to protect data at rest and in transit, including server-side encryption, encryption i...

Azure Data Factory Transform and Enrich Activity with Databricks and Pyspark

In #azuredatafactory at #transform and #enrich part can be done automatically or manually written by #pyspark two examples below one data source #csv another is #sqlserver with #incrementalloading Below is a simple end-to-end PySpark code example for a transform and enrich process in Azure Databricks. This example assumes you have a dataset stored in Azure Blob Storage, and you're using Azure Databricks for processing. ```python # Import necessary libraries from pyspark.sql import SparkSession from pyspark.sql.functions import col, lit, concat # Initialize SparkSession spark = SparkSession.builder \     .appName("Transform and Enrich Process") \     .getOrCreate() # Read data from Azure Blob Storage df = spark.read.csv("wasbs://<container_name>@<storage_account>.blob.core.windows.net/<file_path>", header=True) # Perform transformations transformed_df = df.withColumn("new_column", col("old_column") * 2) # Enrich data enriched...

Handling Large Binary Data with Azure Synapse

  Photo by Gül Işık Handling large binary data in Azure Synapse When dealing with large binary data types like geography or image data in Azure Synapse, you may encounter challenges due to limitations in supported data types and column sizes. Let's take the example of a City table with a Location column holding geography data, which needs to be converted to a varbinary type during loading since Azure Synapse doesn't natively support geography types. Example: 1. Convert to varbinary: During loading, convert the geography data to varbinary. 2. Data Chunking: Since PolyBase supports varbinary up to 8000 bytes, data may get truncated. To overcome this, split the data into manageable chunks. 3. Temporary Staging: Create a temporary staging table for the Location column. 4. Chunk Processing: Split the location data into 8000-byte chunks for each city, resulting in 1 to N rows for each city. 5. Reassembly: Reassemble the chunks using T-SQL PIVOT operator to convert rows into colum...

Incremental Data Loading from Databases for ETL

  pexel Let first discuss what is incremental loading into the data warehouse by ETL from different data sources including databases. Incremental Loading into Data Warehouses: Incremental loading is crucial for efficiently updating data warehouses without reprocessing all data. It involves adding only new or modified data since the last update. Key aspects include: 1. Efficiency: Incremental loading reduces processing time and resource usage by only handling changes. 2. Change Detection: Techniques like timestamp comparison or change data capture (CDC) identify modified data. 3. Data Consistency: Ensure consistency by maintaining referential integrity during incremental updates. 4. Performance: Proper indexing, partitioning, and parallel processing enhance performance during incremental loads. 5. Logging and Auditing: Logging changes ensures traceability and facilitates error recovery in incremental loading processes. Incremental Loading Explained In contrast to a full load,...