Skip to main content

Posts

Showing posts with the label variance

Smart Contract with Rust

  While we focus on writing concurrent backend systems in Rust , you will also interact with our Smart Contracts written in Solidity and develop your understanding of auction mechanisms and DeFi protocols. I can explain this in more detail. Concurrent backend systems are systems that can handle multiple requests at the same time. They are often used in web applications and other systems that need to be able to handle a lot of traffic. Rust is a programming language that is well-suited for writing concurrent backend systems. It has features such as ownership and borrowing that help to prevent race conditions and other concurrency errors. Smart contracts are self-executing contracts that are stored on a blockchain. They are used to automate transactions and agreements. Solidity is a programming language that is used to write smart contracts. It is a statically typed language that is designed to be secure and reliable. Auction mechanisms are methods for selling goods or service...

Bias and Variance in Machine Learning

  Bias and variance are two important concepts in machine learning that are related to the accuracy of a model. Bias is the difference between the average prediction of the model and the true value. A model with high bias is too simple and does not fit the data well. This can lead to underfitting, where the model does not learn the underlying patterns in the data. Variance is the variability of the model's predictions for a given data point. A model with high variance is sensitive to changes in the training data. This can lead to overfitting, where the model learns the noise in the data instead of the underlying patterns. The bias-variance tradeoff is a fundamental concept in machine learning. It states that it is impossible to have a model with low bias and low variance. As you increase the complexity of the model, you reduce the bias but increase the variance. Conversely, as you decrease the complexity of the model, you reduce the variance but increase the bias. The goal is...