Photo by SevenStorm JUHASZIMRUS by pexel Differences Between CPU-based Multi-threading and Multi-processing CPU-based Multi-threading : - Concept: Uses multiple threads within a single process. - Shared Memory: Threads share the same memory space. - I/O Bound Tasks: Effective for tasks that spend a lot of time waiting for I/O operations. - Global Interpreter Lock (GIL): In Python, the GIL can be a limiting factor for CPU-bound tasks since it allows only one thread to execute Python bytecode at a time. CPU-based Multi-processing : - Concept: Uses multiple processes, each with its own memory space. - Separate Memory: Processes do not share memory, leading to more isolation. - CPU Bound Tasks: Effective for tasks that require significant CPU computation since each process can run on a different CPU core. - No GIL: Each process has its own Python interpreter and memory space, so the GIL is not an issue. CUDA with PyTorch : - Concept: Utilizes the GPU for parallel computation. - Massi...
As a seasoned expert in AI, Machine Learning, Generative AI, IoT and Robotics, I empower innovators and businesses to harness the potential of emerging technologies. With a passion for sharing knowledge, I curate insightful articles, tutorials and news on the latest advancements in AI, Robotics, Data Science, Cloud Computing and Open Source technologies. Hire Me Unlock cutting-edge solutions for your business. With expertise spanning AI, GenAI, IoT and Robotics, I deliver tailor services.