Showing posts with label frauddetection. Show all posts
Showing posts with label frauddetection. Show all posts

Monday

Real Time Fraud Detection with Generative AI

 

Photo by Mikhail Nilov in pexel


Fraud detection is a critical task in various industries, including finance, e-commerce, and healthcare. Generative AI can be used to identify patterns in data that indicate fraudulent activity.


Tools and Libraries:

Python: Programming language
TensorFlow or PyTorch: Deep learning frameworks
Scikit-learn: Machine learning library
Pandas: Data manipulation library
NumPy: Numerical computing library
Generative Adversarial Networks (GANs) or Variational Autoencoders (VAEs): Generative AI models

Code:

Here's a high-level example of how you can use GANs for real-time fraud detection:


Data Preprocessing:

import pandas as pd
from sklearn.preprocessing import StandardScaler
# Load data
data = pd.read_csv('fraud_data.csv')
# Preprocess data
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data)


GAN Model:

import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten
from tensorflow.keras.layers import BatchNormalization, LeakyReLU
from tensorflow.keras.models import Sequential
# Define generator and discriminator models
generator = Sequential([
    Dense(64, input_shape=(100,)),
    LeakyReLU(),
    BatchNormalization(),
    Dense(128),
    LeakyReLU(),
    BatchNormalization(),
    Dense(256),
    LeakyReLU(),
    BatchNormalization(),
    Dense(784, activation='tanh')
])
discriminator = Sequential([
    Dense(64, input_shape=(784,)),
    LeakyReLU(),
    BatchNormalization(),
    Dense(128),
    LeakyReLU(),
    BatchNormalization(),
    Dense(256),
    LeakyReLU(),
    BatchNormalization(),
    Dense(1, activation='sigmoid')
])
# Compile GAN model
gan = tf.keras.models.Sequential([generator, discriminator])
gan.compile(loss='binary_crossentropy', optimizer='adam')


Training:

# Train GAN model
gan.fit(data_scaled, epochs=100, batch_size=32)
Real-time Fraud Detection:
Python
# Define a function to detect fraud in real-time
def detect_fraud(data_point):
    # Generate a synthetic data point using the generator
    synthetic_data_point = generator.predict(data_point)
    
    # Calculate the discriminator score
    discriminator_score = discriminator.predict(synthetic_data_point)
    
    # If the score is below a threshold, classify as fraud
    if discriminator_score < 0.5:
        return 1
    else:
        return 0
# Test the function
data_point = pd.read_csv('new_data_point.csv')
fraud_detected = detect_fraud(data_point)
print(fraud_detected)


Note: This is a simplified example and may need to be adapted to your specific use case. Additionally, you may need to fine-tune the model and experiment with different architectures and hyperparameters to achieve optimal results.


You can contact me for a guide on how to learn more about the real use case. Thank you.