Transformer Architecture Multi-Head Attention and Self-Attention are key components of the Transformer architecture, introduced in the paper "Attention Is All You Need" by Vaswani et al. in 2017. Self-Attention (or Intrusive Attention) Self-Attention is a mechanism that allows the model to attend to different parts of the input sequence simultaneously and weigh their importance. It's called "self" because the attention is applied to the input sequence itself, rather than to some external context. Given an input sequence of tokens (e.g., words or characters), the Self-Attention mechanism computes the representation of each token in the sequence by attending to all other tokens. This is done by: Query (Q): The input sequence is linearly transformed into a query matrix. Key (K): The input sequence is linearly transformed into a key matrix. Value (V): The input sequence is linearly transformed into a value matrix. Compute Attention Weights: The dot product of Q an...
As a seasoned expert in AI, Machine Learning, Generative AI, IoT and Robotics, I empower innovators and businesses to harness the potential of emerging technologies. With a passion for sharing knowledge, I curate insightful articles, tutorials and news on the latest advancements in AI, Robotics, Data Science, Cloud Computing and Open Source technologies. Hire Me Unlock cutting-edge solutions for your business. With expertise spanning AI, GenAI, IoT and Robotics, I deliver tailor services.