Skip to main content

Posts

Showing posts with the label pytest

Reproducibility of Python

Ensuring the reproducibility of Python statistical analysis is crucial in research and scientific computing. Here are some ways to achieve reproducibility: 1. Version Control Use version control systems like Git to track changes in your code and data. 2. Documentation Document your code, methods, and results thoroughly. 3. Virtual Environments Use virtual environments like conda or virtualenv to manage dependencies and ensure consistent package versions. 4. Seed Values Set seed values for random number generators to ensure reproducibility of simulations and modeling results. 5. Data Management Use data management tools like Pandas and NumPy to ensure data consistency and integrity. 6. Testing Write unit tests and integration tests to ensure code correctness and reproducibility. 7. Containerization Use containerization tools like Docker to package your code, data, and dependencies into a reproducible environment. 8. Reproducibility Tools Utilize tools like Jupyter Notebook, Jupyter Lab...

Pytest with Django

  Steps and code to set up Django Rest Framework (DRF) test cases with database mocking.  1. Set up Django and DRF Install Django and DRF: ```sh pip install django djangorestframework ``` Create a Django project and app: ```sh django-admin startproject projectname cd projectname python manage.py startapp appname ``` 2. Define Models, Serializers, and Views models.py (appname/models.py): ```python from django.db import models class Item(models.Model):     name = models.CharField(max_length=100)     description = models.TextField() ``` serializers.py (appname/serializers.py): ```python from rest_framework import serializers from .models import Item class ItemSerializer(serializers.ModelSerializer):     class Meta:         model = Item         fields = '__all__' ``` views.py (appname/views.py): ```python from rest_framework import viewsets from .models import Item from .serializers import ItemSerializer class I...