Skip to main content

Hundred Decision Trees with Bagging better or Random Forest in Machine Learning

 


A random forest is a type of ensemble learning method that combines multiple decision trees. It is a more sophisticated approach than bagging because it also randomly selects features to split on at each node of the decision tree. This helps to reduce the correlation between the decision trees, which makes the forest more robust to overfitting.

In general, a random forest is better than 100 decision trees with bagging. This is because the random forest is more robust to overfitting and it can often achieve better accuracy. However, the random forest is also more computationally expensive than bagging.

Here is a table summarizing the key differences between 100 decision trees with bagging and random forest:

Feature100 decision trees with baggingRandom forest
Number of trees100Multiple
Feature selectionAll featuresRandomly selected features
Correlation between treesHighLow
OverfittingMore proneLess prone
AccuracyCan be goodOften better
Computational complexityLess computationally expensiveMore computationally expensive

Ultimately, the best approach to use will depend on the specific problem being solved. If computational resources are limited, then 100 decision trees with bagging may be a better choice. However, if the goal is to achieve the best possible accuracy, then a random forest is the better choice.


Photo by zhang kaiyv

Comments

Popular posts from this blog

Financial Engineering

Financial Engineering: Key Concepts Financial engineering is a multidisciplinary field that combines financial theory, mathematics, and computer science to design and develop innovative financial products and solutions. Here's an in-depth look at the key concepts you mentioned: 1. Statistical Analysis Statistical analysis is a crucial component of financial engineering. It involves using statistical techniques to analyze and interpret financial data, such as: Hypothesis testing : to validate assumptions about financial data Regression analysis : to model relationships between variables Time series analysis : to forecast future values based on historical data Probability distributions : to model and analyze risk Statistical analysis helps financial engineers to identify trends, patterns, and correlations in financial data, which informs decision-making and risk management. 2. Machine Learning Machine learning is a subset of artificial intelligence that involves training algorithms t...

Wholesale Customer Solution with Magento Commerce

The client want to have a shop where regular customers to be able to see products with their retail price, while Wholesale partners to see the prices with ? discount. The extra condition: retail and wholesale prices hasn’t mathematical dependency. So, a product could be $100 for retail and $50 for whole sale and another one could be $60 retail and $50 wholesale. And of course retail users should not be able to see wholesale prices at all. Basically, I will explain what I did step-by-step, but in order to understand what I mean, you should be familiar with the basics of Magento. 1. Creating two magento websites, stores and views (Magento meaning of website of course) It’s done from from System->Manage Stores. The result is: Website | Store | View ———————————————— Retail->Retail->Default Wholesale->Wholesale->Default Both sites using the same category/product tree 2. Setting the price scope in System->Configuration->Catalog->Catalog->Price set drop-down to...

How to Prepare for AI Driven Career

  Introduction We are all living in our "ChatGPT moment" now. It happened when I asked ChatGPT to plan a 10-day holiday in rural India. Within seconds, I had a detailed list of activities and places to explore. The speed and usefulness of the response left me stunned, and I realized instantly that life would never be the same again. ChatGPT felt like a bombshell—years of hype about Artificial Intelligence had finally materialized into something tangible and accessible. Suddenly, AI wasn’t just theoretical; it was writing limericks, crafting decent marketing content, and even generating code. The world is still adjusting to this rapid shift. We’re in the middle of a technological revolution—one so fast and transformative that it’s hard to fully comprehend. This revolution brings both exciting opportunities and inevitable challenges. On the one hand, AI is enabling remarkable breakthroughs. It can detect anomalies in MRI scans that even seasoned doctors might miss. It can trans...