Skip to main content

Posts

Fine Tuning LLM

  Photo by ANTONI SHKRABA production in pexel Large Language Models (LLMs) have revolutionized how we interact with technology, powering various applications from chatbots and content generation to code completion and medical diagnosis. While pre-trained LLMs offer impressive capabilities, their general-purpose nature often falls short of meeting the specific needs of individual applications. To bridge this gap, fine-tuning has emerged as a critical technique to tailor LLMs to specific tasks and domains. Training a pre-trained model on a curated dataset can enhance its performance and align its output with our desired outcomes. Key Reasons for Fine-Tuning LLMs: Improved Accuracy: Fine-tuning allows us to refine the model’s predictions and reduce errors, leading to more accurate and reliable results. Domain Specialization: By training on domain-specific data, we can create models that excel in understanding and generating text within a particular field. Customization: Fine-tuning...

Convert Docker Compose to Kubernetes Orchestration

If you already have a Docker Compose based application. And you may want to orchestrate the containers with Kubernetes. If you are new to Kubernetes then you can search various articles in this blog or Kubernetes website. Here's a step-by-step plan to migrate your Docker Compose application to Kubernetes: Step 1: Create Kubernetes Configuration Files Create a directory for your Kubernetes configuration files (e.g., k8s-config). Create separate YAML files for each service (e.g., api.yaml, pgsql.yaml, mongodb.yaml, rabbitmq.yaml). Define Kubernetes resources (Deployments, Services, Persistent Volumes) for each service. Step 2: Define Kubernetes Resources Deployment YAML Example (api.yaml) YAML apiVersion: apps/v1 kind: Deployment metadata:   name: api-deployment spec:   replicas: 1   selector:     matchLabels:       app: api   template:     metadata:       labels:         app: api     spec:...

Databrickls Lakehouse & Well Architect Notion

Let's quickly learn about Databricks, Lakehouse architecture and their integration with cloud service providers : What is Databricks? Databricks is a cloud-based data engineering platform that provides a unified analytics platform for data engineering, data science and data analytics. It's built on top of Apache Spark and supports various data sources, processing engines and data science frameworks. What is Lakehouse Architecture? Lakehouse architecture is a modern data architecture that combines the benefits of data lakes and data warehouses. It provides a centralized repository for storing and managing data in its raw, unprocessed form, while also supporting ACID transactions, schema enforcement and data governance. Key components of Lakehouse architecture: Data Lake: Stores raw, unprocessed data. Data Warehouse: Supports processed and curated data for analytics. Metadata Management: Tracks data lineage, schema and permissions. Data Governance: Ensures data quality, security ...