Wednesday

GCP Python Microservices Application

Here is a guide for building an end-to-end application using Django, Celery, DRF, Google Cloud Platform (GCP), RabbitMQ, PostgreSQL, and an API Gateway:

Project Setup:

  1. Create a GCP Project:

    • Head over to the Google Cloud Console (https://console.cloud.google.com/) and create a new project or select an existing one.
    • Enable billing if you intend to use paid GCP services.
  2. Install Prerequisites:

    • Ensure you have Python (version 3.6 or later recommended) and pip (package manager) installed on your development machine.
    • Install required libraries:
      Bash
      pip install django celery django-rest-framework djcelery psycopg2-binary pika google-cloud-pubsub
      
  3. Set Up Virtual Environment (Optional):

    • Consider creating a virtual environment using venv or virtualenv to isolate project dependencies.
    • Activate the virtual environment using platform-specific commands.

Django Project and App Structure:

  1. Create Django Project:
    • Initialize a new Django project using:
      Bash
      django-admin startproject myproject
      
  2. Create Django App:
    • Within your project directory, generate a new Django app for your main functionality:
      Bash
      cd myproject
      python manage.py startapp myapp
      

Database (PostgreSQL):

  1. Cloud SQL Instance:
    • In the GCP Console, navigate to Cloud SQL (https://cloud.google.com/sql) and create a Cloud SQL instance:
      • Choose PostgreSQL as the database engine.
      • Select a region and zone for deployment based on your needs.
      • Define instance configuration (machine type, storage) considering expected workload.
    • Take note of the instance connection details (host, port, username, password).

Celery Configuration:

  1. Celery Settings:

    • In your project's settings.py file, add the following configuration for Celery:
      Python
      CELERY_BROKER_URL = 'amqp://<username>:<password>@<host>:<port>/<vhost>'  # Replace placeholders with RabbitMQ details (optional)
      CELERY_RESULT_BACKEND = 'djcelery.backends.database:DatabaseBackend'
      CELERY_ACCEPT_CONTENT = ['application/json']
      CELERY_TASK_SERIALIZER = 'json'
      CELERY_RESULT_SERIALIZER = 'json'
      
    • Replace <username>, <password>, <host>, <port>, and <vhost> with the connection details for your RabbitMQ broker if you plan to use it for task queuing. Otherwise, Celery can use Django's database for results.
  2. Celery Tasks:

    • Within myapp/tasks.py, define your asynchronous tasks using the @celery.shared_task decorator:
      Python
      from .models import MyModel
      
      @celery.shared_task
      def process_data(data):
          # Perform long-running or CPU-intensive task with the data here
          my_model = MyModel.objects.create(data=data)
          # ... other processing logic
          return data  # You can return a result if needed
      

Django REST Framework (DRF) API:

  1. DRF Installation:

    • Ensure you have Django REST Framework (DRF) installed: pip install django-rest-framework
  2. Models:

    • Define data models in myapp/models.py to represent your application's data:
      Python
      from django.db import models
      
      class MyModel(models.Model):
          data = models.CharField(max_length=255)
          created_at = models.DateTimeField(auto_now_add=True)
      
  3. Serializers:

    • Create serializers in myapp/serializers.py using DRF to represent models as JSON:
      Python
      from rest_framework import serializers
      
      from .models import MyModel
      
      class MyModelSerializer(serializers.ModelSerializer):
          class Meta:
              model = MyModel
              fields = '__all__'
      
  4. Views:

    • Implement views in myapp/views.py using Django and DRF to handle API requests and responses:
      Python
      from rest_framework
      

No comments: