Friday

Develop a Customize LLM Agent

 

Photo by MART PRODUCTION at pexel

If you’re interested in customizing an agent for a specific task, one way to do this is to fine-tune the models on your dataset. 

For preparing dataset you can see this article.

1. Curate the Dataset

- Using NeMo Curator:

  - Install NVIDIA NeMo: `pip install nemo_toolkit`

  - Use NeMo Curator to prepare your dataset according to your specific requirements.


2. Fine-Tune the Model


- Using NeMo Framework:

  1. Setup NeMo:

     ```python

     import nemo

     import nemo.collections.nlp as nemo_nlp

     ```

  2. Prepare the Data:

     ```python

     # Example to prepare dataset

     from nemo.collections.nlp.data.text_to_text import TextToTextDataset

     dataset = TextToTextDataset(file_path="path_to_your_dataset")

     ```

  3. Fine-Tune the Model:

     ```python

     model = nemo_nlp.models.NLPModel.from_pretrained("pretrained_model_name")

     model.train(dataset)

     model.save_to("path_to_save_fine_tuned_model")

     ```


- Using HuggingFace Transformers:

  1. Install Transformers:

     ```sh

     pip install transformers

     ```

  2. Load Pretrained Model:

     ```python

     from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, Trainer, TrainingArguments


     model_name = "pretrained_model_name"

     model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

     tokenizer = AutoTokenizer.from_pretrained(model_name)

     ```

  3. Prepare the Data:

     ```python

     from datasets import load_dataset


     dataset = load_dataset("path_to_your_dataset")

     tokenized_dataset = dataset.map(lambda x: tokenizer(x['text'], truncation=True, padding=True), batched=True)

     ```

  4. Fine-Tune the Model:

     ```python

     training_args = TrainingArguments(

         output_dir="./results",

         evaluation_strategy="epoch",

         learning_rate=2e-5,

         per_device_train_batch_size=16,

         per_device_eval_batch_size=16,

         num_train_epochs=3,

         weight_decay=0.01,

     )


     trainer = Trainer(

         model=model,

         args=training_args,

         train_dataset=tokenized_dataset['train'],

         eval_dataset=tokenized_dataset['validation']

     )


     trainer.train()

     model.save_pretrained("path_to_save_fine_tuned_model")

     tokenizer.save_pretrained("path_to_save_tokenizer")

     ```


3. Develop an Agent with LangChain


1. Install LangChain:

   ```sh

   pip install langchain

   ```


2. Load the Fine-Tuned Model:

   ```python

   from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

   from langchain.llms import HuggingFaceLLM


   model = AutoModelForSeq2SeqLM.from_pretrained("path_to_save_fine_tuned_model")

   tokenizer = AutoTokenizer.from_pretrained("path_to_save_tokenizer")


   llm = HuggingFaceLLM(model=model, tokenizer=tokenizer)

   ```


3. Define the Agent:

   ```python

   from langchain.agents import Agent


   agent = Agent(

       llm=llm,

       tools=["tool1", "tool2"],  # Specify the tools your agent will use

       memory="memory_option",    # Specify memory options if any

   )

   ```


4. Use the Agent:

   ```python

   response = agent("Your prompt here")

   print(response)

   ```


This process guides you through curating the dataset, fine-tuning the model, and integrating it into the LangChain framework to develop a custom agent.

You can get more details guide links following.

https://huggingface.co/docs/transformers/en/training

https://github.com/NVIDIA/NeMo-Curator/tree/main/examples

https://docs.smith.langchain.com/old/cookbook/fine-tuning-examples

No comments:

6G Digital Twin with GenAI