Skip to main content

Posts

Django Kafka

How to develop a basic outline of an end-to-end Python application using Django, Django Rest Framework (DRF), and Apache Kafka. Below is an example demo application code to get you started: ```python # 1. Set up Django project # Create a Django project django-admin startproject myproject # Create a Django app python manage.py startapp myapp # 2. Install required packages pip install django djangorestframework kafka-python # 3. Configure Kafka # Assuming Kafka is running locally on default ports # 4. Configure Django settings.py # Add 'rest_framework' and 'myapp' to INSTALLED_APPS # Configure Kafka settings if necessary # 5. Define Django models in models.py (in myapp) from django.db import models class Message(models.Model):     content = models.CharField(max_length=255)     created_at = models.DateTimeField(auto_now_add=True)     def __str__(self):         return self.content # 6. Define DRF serializers in serializers.py (in myapp) from...

Machine Learning Algorithms

  Photo by Vanessa Loring at pexel Different Types of Machine Learning Algorithms: 1. Supervised Learning - Classification: - Use Cases: Classification tasks where the output is a category or label. - Algorithms: - Logistic Regression - Support Vector Machines (SVM) - Decision Trees - Random Forests - Libraries: Scikit-learn, TensorFlow, Keras, PyTorch Regression: - Use Cases: Regression tasks where the output is a continuous value. - Algorithms: - Linear Regression - Libraries: Scikit-learn, TensorFlow, Keras, PyTorch 2. Unsupervised Learning - Clustering: - Use Cases: Grouping data into clusters based on similarity. - Algorithms: - K-Means Clustering - Hierarchical Clustering - K-Median Clustering - DBScan - Libraries: Scikit-learn, TensorFlow, PyTorch Dimensionality Reduction: - Use Cases: Reducing the number of features while retaining important information. - Algorithms: - Principal Component Analysis (PCA) - Singular Value Decom...

GCP Python Microservices Application

Here is a guide for building an end-to-end application using Django, Celery, DRF, Google Cloud Platform (GCP), RabbitMQ, PostgreSQL, and an API Gateway: Project Setup: Create a GCP Project: Head over to the Google Cloud Console ( https://console.cloud.google.com/ ) and create a new project or select an existing one. Enable billing if you intend to use paid GCP services. Install Prerequisites: Ensure you have Python (version 3.6 or later recommended) and pip (package manager) installed on your development machine. Install required libraries: Bash pip install django celery django-rest-framework djcelery psycopg2-binary pika google-cloud-pubsub Set Up Virtual Environment (Optional): Consider creating a virtual environment using venv or virtualenv to isolate project dependencies. Activate the virtual environment using platform-specific commands. Django Project and App Structure: Create Django Project: Initialize a new Django project using: Bash django-admin st...