🚀 TensorRT-Specific LLM Optimizations for Jetson (NVIDIA Edge AI)
TensorRT is NVIDIA’s deep learning optimizer that dramatically improves inference speed for LLMs on Jetson devices. It enables:
✅ Faster inference (2-4x speedup) with lower latency.
✅ Lower power consumption on edge devices.
✅ Optimized memory usage for LLMs.
1️⃣ Install TensorRT & Dependencies
First, install TensorRT on your Jetson Orin/Nano:
sudo apt update
sudo apt install -y nvidia-cuda-toolkit tensorrt python3-libnvinfer
Confirm installation:
dpkg -l | grep TensorRT
2️⃣ Convert LLM to TensorRT Engine
TensorRT requires models in ONNX format before optimization.
Convert GGUF/Quantized Model → ONNX
First, convert your LLaMA/Mistral model to ONNX format:
python convert_to_onnx.py --model model.gguf --output model.onnx
(Use onnx_exporter.py
from Hugging Face if needed.)
3️⃣ Optimize ONNX with TensorRT
Use trtexec
to compile the ONNX model into a TensorRT engine:
trtexec --onnx=model.onnx --saveEngine=model.trt --fp16
🔹 --fp16
: Uses 16-bit floating point for speed boost.
🔹 --saveEngine
: Saves the optimized model as model.trt
.
4️⃣ Run Inference Using TensorRT-Optimized LLM
Now, run the optimized .trt model with TensorRT:
import tensorrt as trt
import numpy as np
# Load TensorRT model
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
runtime = trt.Runtime(TRT_LOGGER)
with open("model.trt", "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
def infer_tensorrt(input_text):
# Preprocess input, run inference, and return response
return "AI Response from TensorRT model"
print(infer_tensorrt("What is Edge AI?"))
5️⃣ Deploy as a FastAPI Edge AI Agent
Run a FastAPI-based chatbot on Jetson:
from fastapi import FastAPI
import subprocess
app = FastAPI()
@app.get("/ask")
def ask(question: str):
cmd = f'./main --engine model.trt -p "{question}" -n 100'
response = subprocess.check_output(cmd, shell=True).decode()
return {"response": response}
# Run API: uvicorn app:app --host 0.0.0.0 --port 8000
🔥 Benchmark TensorRT vs. CPU/GPU Performance
Compare TensorRT vs. CPU vs. GPU inference speed:
trtexec --loadEngine=model.trt --benchmark
💡 Expected Speedup:
🚀 TensorRT (2-4x faster) > CUDA (cuBLAS) > CPU (Slowest)
📌 Conclusion
✅ TensorRT accelerates LLM inference on Jetson Edge AI.
✅ Use ONNX + TensorRT Engine to optimize LLaMA/Mistral models.
✅ Deploy as a FastAPI agent for real-time inference.
🚀 Docker Setup for TensorRT-Optimized LLM on Jetson
This guide provides a fully containerized solution to run an LLM-optimized TensorRT agent on Jetson Orin/Nano.
📦 1️⃣ Create Dockerfile for TensorRT LLM
Create a Dockerfile
to set up TensorRT, FastAPI, and LLM inference:
# Base image with CUDA and TensorRT (JetPack version should match your Jetson)
FROM nvcr.io/nvidia/l4t-tensorrt:r8.5.2-runtime
# Set environment variables for CUDA and TensorRT
ENV DEBIAN_FRONTEND=noninteractive
ENV PATH="/usr/local/bin:${PATH}"
# Install necessary dependencies
RUN apt update && apt install -y \
python3 python3-pip wget git \
&& rm -rf /var/lib/apt/lists/*
# Install Python dependencies
RUN pip3 install --upgrade pip
RUN pip3 install fastapi uvicorn numpy onnxruntime-gpu tensorrt
# Copy LLM model and scripts
WORKDIR /app
COPY model.trt /app/
COPY server.py /app/
# Expose API port
EXPOSE 8000
# Start FastAPI server
CMD ["uvicorn", "server:app", "--host", "0.0.0.0", "--port", "8000"]
📝 2️⃣ Create FastAPI Server (server.py
)
This script loads TensorRT-optimized LLM and serves responses via FastAPI.
from fastapi import FastAPI
import tensorrt as trt
import numpy as np
app = FastAPI()
# Load TensorRT engine
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
runtime = trt.Runtime(TRT_LOGGER)
with open("model.trt", "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
def infer_tensorrt(input_text):
""" Run LLM inference using TensorRT """
# Preprocess text input and run inference here
return f"Response from TensorRT model: {input_text}"
@app.get("/ask")
def ask(question: str):
return {"response": infer_tensorrt(question)}
🐳 3️⃣ Build & Run Docker Container
Build the Docker Image
docker build -t jetson-trt-llm .
Run the Container
docker run --runtime nvidia --network host --rm -it jetson-trt-llm
🔥 4️⃣ Test the Edge AI LLM API
Once the container is running, test the API:
curl "http://localhost:8000/ask?question=What is Edge AI?"
🔹 Expected Output:
{"response": "Response from TensorRT model: What is Edge AI?"}
📌 Conclusion
✅ Dockerized FastAPI agent running a TensorRT-optimized LLM on Jetson.
✅ Real-time, low-latency inference with NVIDIA TensorRT acceleration.
✅ Scalable Edge AI solution for private, offline GenAI models.
No comments:
Post a Comment