🌍 GenAI LLM-Based Agents on Edge AI: Why, When, and How?
🚀 Why Use GenAI LLMs on Edge AI?
Deploying Generative AI (GenAI) Large Language Models (LLMs) on Edge AI enables real-time, low-latency, and offline AI processing. Unlike cloud-based models, Edge AI provides:
✅ Low Latency: No network delays, instant responses.
✅ Privacy & Security: Data stays on the device, no external leaks.
✅ Offline Capability: Works without an internet connection.
✅ Reduced Costs: No cloud GPU costs, runs on local hardware.
✅ Energy Efficiency: Optimized execution for power-limited edge devices.
⏳ When to Use GenAI LLMs on Edge AI?
Use Edge AI for GenAI-based agents when:
🟢 Real-Time Decision-Making → Industrial IoT, Autonomous Vehicles.
🟢 Privacy-Critical Applications → Healthcare, Personal AI Assistants.
🟢 Offline Functionality Needed → Remote Locations, Defense, IoT Devices.
🟢 Cloud Costs are Too High → Local AI processing reduces dependency.
When NOT to use Edge AI:
🔴 If models require large GPUs (e.g., GPT-4, LLaMA-70B).
🔴 If real-time updates & cloud APIs are needed (e.g., SaaS AI apps).
⚙️ How to Deploy a GenAI LLM Agent on Edge AI?
1️⃣ Choose an Edge AI Device
- Jetson Orin/Nano (Best for CUDA & TensorRT) ✅
- Raspberry Pi 5 (Best for low-power LLMs) ✅
- Intel NPU (Neural Compute Stick 2) – OpenVINO Optimized ✅
2️⃣ Select a Lightweight LLM Model
🟢 Best Models for Edge AI:
- Phi-3 Mini (3.8B) – Best for small AI agents.
- Mistral-7B (4-bit Quantized) – Stronger AI reasoning.
- TinyLlama (1.1B) – Fastest for Raspberry Pi.
- LLaMA 2/3 (7B, Quantized) – Balanced size vs. accuracy.
📌 Use GGUF Quantization to optimize LLMs for Edge AI.
Yes, we can develop an LLM-based AI agent in Edge AI, but there are some challenges and optimizations required. Here’s how we can approach it:
1. Key Considerations for Edge AI with LLMs
- Hardware Constraints: Edge devices have limited compute power (CPU, GPU, RAM).
- Latency & Real-Time Processing: Edge AI should process requests quickly with minimal delay.
- Energy Efficiency: Edge devices may run on battery, requiring optimized models.
- Connectivity: Edge AI should work offline or with intermittent internet access.
2. Optimized LLM Models for Edge AI
We should use small and efficient models instead of large cloud-based ones. Some options:
- Phi-3 Mini (Microsoft) – Lightweight, optimized for edge.
- Gemma 2B (Google) – Efficient and runs on lower-end hardware.
- Mistral 7B (Quantized) – Can run on edge devices with optimizations.
- Llama 2 7B (4-bit Quantized) – Works with tools like GGUF, GPTQ.
- TinyLlama – Extremely small yet effective.
For very lightweight cases, consider distilled models like DistilBERT, MiniLM, or ALBERT.
3. Deployment Strategies
A. Running LLMs Directly on Edge
- Use ONNX Runtime or TensorRT for acceleration.
- Use quantization (4-bit, 8-bit) to reduce model size and computation.
- Frameworks:
- GGUF (for quantized Llama models)
- ONNX for model inference optimization
- TensorFlow Lite (TFLite) for mobile & edge devices
- TVM (Apache) for optimizing inference speed
B. Hybrid Edge-Cloud Approach
- Run a smaller model locally for basic queries.
- Offload complex queries to a cloud-based LLM when needed.
- Example: Use Phi-3 Mini on edge and call GPT-4 via API when required.
4. Hardware for Edge AI Agents
Depending on our use case, choose:
- Raspberry Pi 5 (for light AI tasks, use quantized models)
- NVIDIA Jetson Orin/Nano (best for AI/ML inference)
- Intel NPU or Myriad X (for optimized deep learning inference)
- Coral Edge TPU (Google) (for TFLite models)
- Apple M-Series chips (for ML acceleration on Mac/iOS)
5. Use Cases for Edge AI LLM Agents
- On-Device Chatbot (e.g., personal assistants, customer service bots)
- Autonomous Robots & Drones (real-time NLP processing)
- Healthcare AI Assistants (offline diagnosis/chat support)
- Industrial IoT (real-time monitoring with NLP)
- Smart Home Assistants (privacy-focused AI models)
6. Next Steps
- Choose an optimized model (Phi-3, TinyLlama, Mistral 7B quantized).
- Select a framework (GGUF, ONNX, TFLite).
- Deploy on an Edge AI device (Jetson, Raspberry Pi, NPU-based system).
- Optimize with quantization & acceleration (GPTQ, TVM, TensorRT).
Step-by-Step Guide to Deploy an LLM-Based AI Agent on Edge AI
We will set up a lightweight LLM (Phi-3 Mini, TinyLlama, or Mistral 7B quantized) on an Edge AI device (Jetson Orin, Raspberry Pi 5, or Intel NPU).
🛠 Step 1: Choose the Hardware
Based on our compute power and use case, select one:
- 🔹 Raspberry Pi 5 – Best for basic NLP tasks with a quantized model (TinyLlama, Phi-3).
- 🔹 NVIDIA Jetson Orin/Nano – For running LLMs with TensorRT acceleration.
- 🔹 Intel NPU (Neural Compute Stick 2) – If we need low-power deep learning inference.
For this guide, I’ll assume Raspberry Pi 5 (but can modify for Jetson/Intel if needed).
🛠 Step 2: Install Dependencies
1️⃣ Update & Install Required Packages
sudo apt update && sudo apt upgrade -y
sudo apt install -y python3-pip git wget curl
2️⃣ Install PyTorch (Optimized for Edge)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
For Jetson, install the NVIDIA JetPack SDK.
3️⃣ Install Llama.cpp (for running quantized models)
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make
🛠 Step 3: Download a Lightweight LLM (Phi-3, TinyLlama, Mistral 7B Quantized)
🔹 For Phi-3 Mini (2.7B) or TinyLlama (1.1B)
wget -O model.gguf https://huggingface.co/microsoft/Phi-3-mini-4bit-GGUF/resolve/main/model.gguf
🔹 For Mistral 7B (Quantized, 4-bit GGUF)
wget -O model.gguf https://huggingface.co/TheBloke/Mistral-7B-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_K_M.gguf
🛠 Step 4: Run the Model on the Edge Device
🔹 Run the model using llama.cpp
for fast inference
./main -m model.gguf -p "Hello, how can I assist you?" -n 100
-m model.gguf
→ Load the model-p "Hello..."
→ Prompt-n 100
→ Limit response tokens
🔹 If using Jetson, optimize with TensorRT
pip install tensorrt
python3 run_llm.py --use-tensorrt
🛠 Step 5: Create an AI Agent API with FastAPI
If we want a REST API for our AI agent, use FastAPI.
1️⃣ Install FastAPI & Uvicorn
pip install fastapi uvicorn
2️⃣ Create app.py
from fastapi import FastAPI
import subprocess
app = FastAPI()
@app.get("/ask")
def ask(question: str):
cmd = f'./main -m model.gguf -p "{question}" -n 100'
response = subprocess.check_output(cmd, shell=True).decode()
return {"response": response}
# Run with: uvicorn app:app --host 0.0.0.0 --port 8000
3️⃣ Run the API
uvicorn app:app --host 0.0.0.0 --port 8000
Now, test with:
curl "http://localhost:8000/ask?question=What%20is%20Edge%20AI?"
🛠 Step 6: Optimize Performance
1️⃣ Use GGUF 4-bit Quantization (Already Applied)
- Reduces memory usage from 16GB to ~4GB.
- Keeps acceptable performance on Raspberry Pi.
2️⃣ Use ONNX Runtime (For Further Speed Boost)
pip install onnxruntime
Modify our script:
import onnxruntime as ort
session = ort.InferenceSession("model.onnx")
3️⃣ Use TensorRT (For NVIDIA Jetson)
sudo apt install nvidia-tensorrt
Run:
import tensorrt as trt
🚀 Final Outcome
- ✅ LLM-Based AI Agent Running on Edge
- ✅ Accepts Queries via REST API
- ✅ Optimized for Low-Power Devices
We can use Ollama for deploying an LLM-based agent on Edge AI, but it has higher hardware requirements. Here’s how it fits in:
🛠 Can We Use Ollama on Edge AI?
✅ Yes, but it depends on our hardware:
- 🟢 NVIDIA Jetson Orin/Nano → Ollama works with GPU acceleration (TensorRT).
- 🟢 Apple M1/M2/M3 (Mac) → Ollama runs natively with Metal acceleration.
- 🟡 Raspberry Pi 5 → Difficult but possible (must use a small 4-bit model).
- 🔴 Intel NPU (Neural Compute Stick 2) → Not recommended (Ollama lacks NPU support).
🔹 Ollama works best with GPUs (CUDA on Jetson, Metal on Mac).
🔹 If our Edge device has only CPU, Ollama may be too slow.
🛠 How to Install Ollama on Edge AI?
1️⃣ Install Ollama
curl -fsSL https://ollama.com/install.sh | sh
curl -fsSL https://ollama.com/install.sh | sh
2️⃣ Check if It Works
ollama run mistral
ollama run mistral
3️⃣ Use a Lightweight Model (Phi-3, TinyLlama)
ollama pull microsoft/phi-3-mini
ollama run phi-3-mini
ollama pull microsoft/phi-3-mini
ollama run phi-3-mini
🛠 How to Run an AI Agent with Ollama (FastAPI API)
1️⃣ Install FastAPI
pip install fastapi uvicorn
pip install fastapi uvicorn
2️⃣ Create app.py
from fastapi import FastAPI
import subprocess
app = FastAPI()
@app.get("/ask")
def ask(question: str):
cmd = f'ollama run phi-3-mini "{question}"'
response = subprocess.check_output(cmd, shell=True).decode()
return {"response": response}
# Run: uvicorn app:app --host 0.0.0.0 --port 8000
from fastapi import FastAPI
import subprocess
app = FastAPI()
@app.get("/ask")
def ask(question: str):
cmd = f'ollama run phi-3-mini "{question}"'
response = subprocess.check_output(cmd, shell=True).decode()
return {"response": response}
# Run: uvicorn app:app --host 0.0.0.0 --port 8000
3️⃣ Run the API
uvicorn app:app --host 0.0.0.0 --port 8000
uvicorn app:app --host 0.0.0.0 --port 8000
4️⃣ Test the API
curl "http://localhost:8000/ask?question=What%20is%20Edge%20AI?"
curl "http://localhost:8000/ask?question=What%20is%20Edge%20AI?"
🛠 When to Use Ollama vs. Llama.cpp
Feature | Ollama | Llama.cpp |
---|---|---|
GPU Acceleration | ✅ Yes (CUDA, Metal) | ❌ No |
Easy Model Management | ✅ Yes | ❌ Manual |
Lower RAM Usage | ❌ High (8GB+) | ✅ Low (4GB possible) |
Faster Inference | ✅ Yes (GPU) | 🟡 Medium (CPU) |
🔹 If using Jetson with GPU, Ollama is good.
🔹 If using Raspberry Pi 5 (only CPU), use llama.cpp
instead.
🛠 Yes, We Can Quantize Ollama Models!
Quantization reduces memory and speeds up inference by using lower-bit precision (4-bit, 8-bit). Ollama itself does not support custom quantization, but we can convert and load quantized models manually.
🔥 Step 1: Convert an LLM to Quantized GGUF Format
Ollama models are in .mod format, but we can use llama.cpp
to quantize them.
1️⃣ Install llama.cpp
for Quantization
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make
2️⃣ Download a Pretrained Model (e.g., Phi-3, Mistral)
wget -O model.f16.gguf https://huggingface.co/microsoft/Phi-3-mini-GGUF/resolve/main/model.f16.gguf
wget -O model.f16.gguf https://huggingface.co/microsoft/Phi-3-mini-GGUF/resolve/main/model.f16.gguf
3️⃣ Quantize to 4-bit (Q4_0)
./quantize model.f16.gguf model.q4_0.gguf q4_0
./quantize model.f16.gguf model.q4_0.gguf q4_0
For even smaller models:
./quantize model.f16.gguf model.q8_0.gguf q8_0 # 8-bit
🔥 Step 2: Run the Quantized Model in Ollama
Now, Ollama does not natively support GGUF yet. But we can do this:
1️⃣ Convert GGUF to Ollama Format
ollama create phi-3-mini-q4 -m model.q4_0.gguf
ollama create phi-3-mini-q4 -m model.q4_0.gguf
(⚠️ If this fails, Ollama does not support direct GGUF loading. Use llama.cpp
instead.)
2️⃣ Run the Quantized Model
ollama run phi-3-mini-q4
ollama run phi-3-mini-q4
🔥 Step 3: Alternative - Run Quantized Model with llama.cpp
If Ollama cannot load the GGUF model, run it with llama.cpp
:
./main -m model.q4_0.gguf -p "Explain Edge AI in simple words." -n 100
💡 When to Use Quantized Models?
Use Case | Best Option |
---|---|
Jetson Orin + GPU | Ollama with CUDA |
Raspberry Pi 5 (CPU only) | llama.cpp with 4-bit quantization |
Low RAM (≤4GB) | llama.cpp with Q4_0 models |
Fastest Response (8GB+ RAM, Edge AI) | Ollama with 8-bit models |
🚀 Final Answer
✅ We can quantize models for Edge AI
✅ Use llama.cpp
for loading GGUF models
❌ Ollama does not support custom quantized GGUF directly
🚀 Is CUDA the Best Choice for Edge AI?
✅ CUDA is great for Edge AI, but only if our device has an NVIDIA GPU (like Jetson Orin/Nano).
🔥 Where Can CUDA Work?
Device | CUDA Supported? | Best Option |
---|---|---|
NVIDIA Jetson Orin/Nano | ✅ Yes | TensorRT + CUDA |
Desktop with NVIDIA GPU | ✅ Yes | CUDA-accelerated Ollama/Llama.cpp |
Apple M1/M2/M3 (Mac) | ❌ No | Use Metal (Apple’s equivalent) |
Raspberry Pi 5 (ARM CPU only) | ❌ No | Use llama.cpp (CPU) |
Intel NPU (Neural Compute Stick 2) | ❌ No | Use OpenVINO or EdgeTPU |
🔥 Best CUDA-Optimized LLM Setup for Edge AI (Jetson)
1️⃣ Install CUDA & cuDNN
sudo apt install nvidia-cuda-toolkit
2️⃣ Install TensorRT for Faster LLM Execution
sudo apt install libnvinfer-dev
3️⃣ Run llama.cpp
with CUDA for Fast Inference
LLAMA_CUBLAS=1 make
./main -m model.q4_0.gguf -p "Explain Edge AI." -n 100
4️⃣ Optimize CUDA with TensorRT (Jetson only)
sudo apt install tensorrt
Then use a TensorRT-optimized model.
🔥 Should We Use CUDA for Edge AI?
✅ Yes, if we have an NVIDIA Jetson or GPU
❌ No, if we use Raspberry Pi or Intel NPU
For Jetson, CUDA + TensorRT is the best choice for LLMs.
For Raspberry Pi, use llama.cpp (CPU-only, quantized models).
🚀 Final Verdict
If we have an NVIDIA GPU, CUDA is perfect. If not, use CPU-based LLMs.
No comments:
Post a Comment