Saturday

LangChain Memory Store

To add bigger memory space with LangChain, you can leverage the various memory modules that LangChain provides. Here's a brief guide on how to do it:

1. Use a Larger Memory Backend

LangChain allows you to use different types of memory backends. For larger memory capacity, you can use backends like databases or cloud storage. For instance, using a vector database like Pinecone or FAISS can help manage larger context effectively.

2. Implement a Custom Memory Class

You can implement your own memory class to handle larger context. Here’s an example of how to create a custom memory class:


```python

from langchain.memory import BaseMemory


class CustomMemory(BaseMemory):

    def __init__(self):

        self.memory = []


    def add_to_memory(self, message):

        self.memory.append(message)

    

    def get_memory(self):

        return self.memory


    def clear_memory(self):

        self.memory = []

```

3. Configure Memory in LangChain

When setting up the chain, you can specify the memory class you want to use:


```python

from langchain import LLMChain

from langchain.llms import OpenAI


# Create an instance of your custom memory class

custom_memory = CustomMemory()


# Initialize the language model

llm = OpenAI(api_key='your_openai_api_key')


# Create the chain with the custom memory

chain = LLMChain(llm=llm, memory=custom_memory)


# Add messages to memory

chain.memory.add_to_memory("Previous context or message")


# Retrieve memory

context = chain.memory.get_memory()

```

4. Use External Storage

For even larger memory, consider using external storage solutions like a database (e.g., PostgreSQL, MongoDB) or cloud storage (e.g., AWS S3, Google Cloud Storage). You can extend the memory class to interact with these external storage systems.


Example with SQLite:


```python

import sqlite3

from langchain.memory import BaseMemory


class SQLiteMemory(BaseMemory):

    def __init__(self, db_path):

        self.conn = sqlite3.connect(db_path)

        self.cursor = self.conn.cursor()

        self.cursor.execute('''CREATE TABLE IF NOT EXISTS memory (message TEXT)''')


    def add_to_memory(self, message):

        self.cursor.execute("INSERT INTO memory (message) VALUES (?)", (message,))

        self.conn.commit()

    

    def get_memory(self):

        self.cursor.execute("SELECT message FROM memory")

        return [row[0] for row in self.cursor.fetchall()]


    def clear_memory(self):

        self.cursor.execute("DELETE FROM memory")

        self.conn.commit()

        self.conn.close()


# Initialize SQLite memory

sqlite_memory = SQLiteMemory('memory.db')


# Create the chain with SQLite memory

chain = LLMChain(llm=llm, memory=sqlite_memory)

```

By using these methods, you can effectively increase the memory capacity for your LangChain application, ensuring it can handle and recall larger contexts across interactions.

No comments:

6G Digital Twin with GenAI