Skip to main content

Local Copilot with SLM

 

Photo by ZHENYU LUO on Unsplash

What is a Copilot?

A copilot in the context of software development and artificial intelligence refers to an AI-powered assistant that helps users by providing suggestions, automating repetitive tasks, and enhancing productivity. These copilots can be integrated into various applications, such as code editors, customer service platforms, or personal productivity tools, to provide real-time assistance and insights.


Benefits of a Copilot

1. Increased Productivity:

   - Copilots can automate repetitive tasks, allowing users to focus on more complex and creative aspects of their work.

2. Real-time Assistance:

   - Provides instant suggestions and corrections, reducing the time spent on debugging and error correction.

3. Knowledge Enhancement:

   - Offers context-aware suggestions that help users learn and apply best practices, improving their skills over time.

4. Consistency:

   - Ensures consistent application of coding standards, style guides, and other best practices across projects.


What is a Local Copilot?

A local copilot is a variant of AI copilots that runs entirely on local compute resources rather than relying on cloud-based services. This setup involves deploying smaller, yet powerful, language models on local machines. 


Benefits of a Local Copilot


1. Privacy and Security:

   - Running models locally ensures that sensitive data does not leave the user's environment, mitigating risks associated with data breaches and unauthorized access.

2. Reduced Latency:

   - Local execution eliminates the need for data transmission to and from remote servers, resulting in faster response times.

3. Offline Functionality:

   - Local copilots can operate without an internet connection, making them reliable even in environments with limited or no internet access.

4. Cost Efficiency:

   - Avoids the costs associated with cloud-based services and data storage.


How to Implement a Local Copilot

Implementing a local copilot involves selecting a smaller language model, optimizing it to fit on local hardware, and integrating it with a framework like LangChain to build and run AI agents. Here are the high-level steps:


1. Model Selection:

   - Choose a language model that has 8 billion parameters or less.

2. Optimization with TensorRT:

   - Quantize and optimize the model using NVIDIA TensorRT-LLM to reduce its size and ensure it fits on your GPU.

3. Integration with LangChain:

   - Use the LangChain framework to build and manage the AI agents that will run locally.

4. Deployment:

   - Deploy the optimized model on local compute resources, ensuring it can handle the tasks required by the copilot.


By leveraging local compute resources and optimized language models, you can create a robust, privacy-conscious, and efficient local copilot to assist with various tasks and enhance productivity.


To develop a local copilot using smaller language models with LangChain and NVIDIA TensorRT-LLM, follow these steps:


Step-by-Step Guide


1. Set Up Your Environment


1. Install Required Libraries:

   Ensure you have Python installed and then install the necessary libraries:

   ```bash

   pip install langchain nvidia-pyindex nvidia-tensorrt

   ```


2. Prepare Your GPU:

   Make sure your system has an NVIDIA GPU and CUDA drivers installed. You'll also need TensorRT libraries which can be installed via the NVIDIA package index:

   ```bash

   sudo apt-get install nvidia-cuda-toolkit

   sudo apt-get install tensorrt

   ```


2. Model Preparation


1. Select a Smaller Language Model:

   Choose a language model that has 8 billion parameters or less. You can find many such models on platforms like Hugging Face.

2. Quantize the Model Using NVIDIA TensorRT-LLM:

   Use TensorRT to optimize and quantize the model to make it fit on your GPU.

   ```python

   import tensorrt as trt


   # Load your model here

   model = load_your_model_function()


   # Create a TensorRT engine

   builder = trt.Builder(trt.Logger(trt.Logger.WARNING))

   network = builder.create_network()

   parser = trt.OnnxParser(network, trt.Logger(trt.Logger.WARNING))


   with open("your_model.onnx", "rb") as f:

       parser.parse(f.read())


   engine = builder.build_cuda_engine(network)

   ```


3. Integrate with LangChain


1. Set Up LangChain:

   Create a LangChain project and configure it to use your local model.

   ```python

   from langchain import LangChain, LanguageModel


   # Assuming you have a function to load your TensorRT engine

   def load_trt_engine(engine_path):

       with open(engine_path, "rb") as f, trt.Runtime(trt.Logger(trt.Logger.WARNING)) as runtime:

           return runtime.deserialize_cuda_engine(f.read())


   trt_engine = load_trt_engine("your_model.trt")


   class LocalLanguageModel(LanguageModel):

       def __init__(self, engine):

           self.engine = engine


       def predict(self, input_text):

           # Implement prediction logic using TensorRT engine

           pass


   local_model = LocalLanguageModel(trt_engine)

   ```


2. Develop the Agent:

   Use LangChain to develop your agent utilizing the local language model.

   ```python

   from langchain.agents import Agent


   class LocalCopilotAgent(Agent):

       def __init__(self, model):

           self.model = model


       def respond(self, input_text):

           return self.model.predict(input_text)


   agent = LocalCopilotAgent(local_model)

   ```


4. Run the Agent Locally


1. Execute the Agent:

   Run the agent locally to handle tasks as required.

   ```python

   if __name__ == "__main__":

       user_input = "Enter your input here"

       response = agent.respond(user_input)

       print(response)

   ```


By following these steps, you can develop a local copilot using LangChain and NVIDIA TensorRT-LLM. This approach ensures privacy and security by running the model on local compute resources.

Comments

Popular posts from this blog

Financial Engineering

Financial Engineering: Key Concepts Financial engineering is a multidisciplinary field that combines financial theory, mathematics, and computer science to design and develop innovative financial products and solutions. Here's an in-depth look at the key concepts you mentioned: 1. Statistical Analysis Statistical analysis is a crucial component of financial engineering. It involves using statistical techniques to analyze and interpret financial data, such as: Hypothesis testing : to validate assumptions about financial data Regression analysis : to model relationships between variables Time series analysis : to forecast future values based on historical data Probability distributions : to model and analyze risk Statistical analysis helps financial engineers to identify trends, patterns, and correlations in financial data, which informs decision-making and risk management. 2. Machine Learning Machine learning is a subset of artificial intelligence that involves training algorithms t...

Wholesale Customer Solution with Magento Commerce

The client want to have a shop where regular customers to be able to see products with their retail price, while Wholesale partners to see the prices with ? discount. The extra condition: retail and wholesale prices hasn’t mathematical dependency. So, a product could be $100 for retail and $50 for whole sale and another one could be $60 retail and $50 wholesale. And of course retail users should not be able to see wholesale prices at all. Basically, I will explain what I did step-by-step, but in order to understand what I mean, you should be familiar with the basics of Magento. 1. Creating two magento websites, stores and views (Magento meaning of website of course) It’s done from from System->Manage Stores. The result is: Website | Store | View ———————————————— Retail->Retail->Default Wholesale->Wholesale->Default Both sites using the same category/product tree 2. Setting the price scope in System->Configuration->Catalog->Catalog->Price set drop-down to...

How to Prepare for AI Driven Career

  Introduction We are all living in our "ChatGPT moment" now. It happened when I asked ChatGPT to plan a 10-day holiday in rural India. Within seconds, I had a detailed list of activities and places to explore. The speed and usefulness of the response left me stunned, and I realized instantly that life would never be the same again. ChatGPT felt like a bombshell—years of hype about Artificial Intelligence had finally materialized into something tangible and accessible. Suddenly, AI wasn’t just theoretical; it was writing limericks, crafting decent marketing content, and even generating code. The world is still adjusting to this rapid shift. We’re in the middle of a technological revolution—one so fast and transformative that it’s hard to fully comprehend. This revolution brings both exciting opportunities and inevitable challenges. On the one hand, AI is enabling remarkable breakthroughs. It can detect anomalies in MRI scans that even seasoned doctors might miss. It can trans...